0000000000157230
AUTHOR
Yoshiteru Iinuma
Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign
A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO<sub>2</sub> and CO measurements. The mass scattering efficiencies of 8.9&plusmn;0.2 m<sup>2</sup> g<sup>…
General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales
In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…
Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F–BEACh 2014 field study
Abstract. The chemical composition of organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in Central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F–BEACh 2014). Aerosols were analyzed in real-time by Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA–MS), Aerosol Mass Spectrometry (AMS), and Chemical Ionization Atmospheric-Pressure interface Time-of-Flight Mass Spectrometry (CI–APiToF–MS). In addition, offline detection of acidic organic compounds was conducted by non-target screening of filter samples using High Resolution Mass Spectrometry (HRMS) in combination with Ultra-High Pressu…
The molecular identification of organic compounds in the atmosphere: state of the art and challenges.
SSCI-VIDE+ATARI:CARE+BNO:BDA; International audience
The formation, properties and impact of secondary organic aerosol: Current and emerging issues
Hallquist, M. Wenger, J. C. Baltensperger, U. Rudich, Y. Simpson, D. Claeys, M. Dommen, J. Donahue, N. M. George, C. Goldstein, A. H. Hamilton, J. F. Herrmann, H. Hoffmann, T. Iinuma, Y. Jang, M. Jenkin, M. E. Jimenez, J. L. Kiendler-Scharr, A. Maenhaut, W. McFiggans, G. Mentel, Th. F. Monod, A. Prevot, A. S. H. Seinfeld, J. H. Surratt, J. D. Szmigielski, R. Wildt, J.; Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated wit…