0000000000157580
AUTHOR
M. Huang
Synthesis and detection of a seaborgium carbonyl complex
A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO) 6 was the most likely structural formula. Science , this issue p. 1491 ; see also p. 14…
Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…
Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV
The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…
Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at sNN=2.76 TeV
Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at root s(NN) = 2.76 TeV for transverse momenta 0.25 p(T)(a). The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval |eta| 0.8, and are referred to as "long-range correlations". Fourier components V-n Delta equivalent to are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, …
Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {\sqrt{s}=8}~$$\end{document}s=8TeV
We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…
Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…
Rosenbluth Separation of the π^{0} Electroproduction Cross Section.
We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. The Rosenbluth technique was used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component, and thus is far from the asymptotic limit predicted by perturbative Quantum Chromodynamics. An indication of a non-zero longitudinal contribution is provided by the interference term $\sigma_{LT}$ also measured. Results are compared with several models based on the leading twist approach of G…
A glimpse of gluons through deeply virtual compton scattering on the proton
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…
Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV
The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…
Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 7$$\end{document}s=7 TeV
The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…
Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}ϕ(1020) in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_{{\text {NN}}}}$$\end{document}sNN = 5.02 TeV
The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…
Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at sNN=2.76 TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In cen…
Two-pion Bose–Einstein correlations in central Pb–Pb collisions at sNN=2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved.
Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron
We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…
Direct photon production in Pb–Pb collisions atsNN=2.76 TeV
Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…
Precision measurement of the mass difference between light nuclei and anti-nuclei
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…
Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…
Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays
The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…
Deeply virtual compton scattering off the neutron.
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {pp}$$\end{document}pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {\sqrt{s}=7}~$$\end{document}s=7TeV
The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …
The ALICE Collaboration
The production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons ( , , and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (〈dN/dy〉) of 0.184 ± 0.002(stat.) ± 0.006(syst.) for KS and 0.021 ± 0.004(stat.) ± 0.003(syst.) for φ. For baryons, we find 〈dN/dy〉 = 0.048 ± 0.001(stat.) ± 0.004(syst.) for , 0.047 ± 0.002(stat.) ± 0.005(syst.) for and 0.0101 ± 0.0…
Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all
International audience; This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focus…
Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV
The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…
Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE
Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…
Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector
In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…
Message from CISIS 2013 Workshops Co-Chairs
"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.