0000000000158247
AUTHOR
Stanley J. Watson
Region specific expression of furin mRNA in the rat brain.
The distribution of furin mRNA was examined in the rat central nervous system. Northern blot analysis reveals the presence of a 4.4 kb band in all brain tissues examined. In situ hybridization analysis of frozen rat brain sections using a radioactively labeled antisense cRNA probe to rat furin demonstrated moderate to low levels of expression in both neuronal and non-neuronal tissue in all areas examined. Interestingly, higher levels of furin were expressed in selective regions which include the ventricles (the choroid plexus and ependymal cells), the islands of Calleja, the hippocampus and the pineal gland. the ubiquitous localization of furin in the brain is consistent with its postulated…
Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs
AM Vicente - Cross-Disorder Group of the Psychiatric Genomics Consortium Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in …
Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways
G.B. and S.N. acknowledge funding support for this work from the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. P.H.L. is supported by US National Institute of Mental Health (NIMH) grant K99MH101367. Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an an…
Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generat…