0000000000158309
AUTHOR
C. Mischler
Dynamics of confined polymer melts: Recent Monte Carlo simulation results
The dynamic behavior of thin polymer films is studied by Monte Carlo simulations of a simplified lattice model. The film geometry is realized by two opposite hard walls whose distance is varied in the simulations. In the films the dynamics is accelerated with respect to the bulk, leading to a decrease of the extrapolated glass transition temperature with decreasing film thickness.
Polymer Films in the Normal-Liquid and Supercooled State: A Review of Recent Monte Carlo Simulation Results
This paper reviews recent Monte Carlo simulation studies of the glassy behavior in thin polymer films. The simulations employ a version of the bond-fluctuation lattice model, in which the glass transition is driven by the competition between a stiffening of the polymers and their dense packing in the melt. The melt is geometrically confined between two impenetrable walls separated by distances ranging from once to about fifteen times the bulk radius of gyration. The confinement influences static and dynamic properties of the films: Chains close to the wall preferentially orient parallel to it. This orientation tendency propagates through the film and leads to a layer structure at low temper…