0000000000160783
AUTHOR
Ernest Weingartner
Partitioning of Aerosol Particles in Mixed-phase Clouds at a High Alpine Site
6 German Aerospace Centre, D-82234, Wessling, Germany * Now at Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland Abstract The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3,580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the scavenged fraction of aerosol particles, F Scav , and of black carbon, F Scav,BC . They denote the fraction of the aerosol volume con…
Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques
Abstract. In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and …
Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland
The refractory black carbon (rBC) mass, size distribution (190–720 nm) and mixing state in sub-micron aerosols were characterized from late February to March 2007 using a single particle incandescence method at the high alpine research station Jungfraujoch (JFJ), Switzerland (46.33° N, 7.59° E, 3580 m a.s.l.). JFJ is a ground based location, which is at times exposed to continental free tropospheric air. A median mass absorption coefficient (MAC) of 10.2&plusmn;3.2 m<sup>2</sup> g<sup>−1</sup> at &lambda;=630 nm was derived by comparing single particle incandescence measurements of black carbon mass with continuous measurements of absorption coefficient. This…