0000000000160806
AUTHOR
J. Pastor
Extrakorporale Stoßwellenlithotripsie (ESWL) — Physikalische und biologische Grundlagen
Sieben Jahre sind inzwischen seit der ersten humanen ESWL-Behandlung im Februar 1980 vergangen, vier Jahre seit der Inbetriebnahme der 2. ESWL-Anlage hier in Stuttgart und damit seit dem Beginn der serienmasigen Verteilung der ESWL-Technologie, zunachst in der Bundesrepublik Deutschland, danach weltweit.
Farkas-Minkowski systems in semi-infinite programming
The Farkas-Minkowski systems are characterized through a convex cone associated to the system, and some sufficient conditions are given that guarantee the mentioned property. The role of such systems in semi-infinite programming is studied in the linear case by means of the duality, and, in the nonlinear case, in connection with optimality conditions. In the last case the property appears as a constraint qualification.
Representacion finita de sistemas de infinitas inecuaciones
Dado un problema de Programacion Semi-Infinita, si se puede obtener una representacion finita del conjunto factible, pueden aplicarse para resolver el problema los metodos de programacion con finitas restricciones.
Synthesis and Assembly of Wall Polymers on Regenerating Yeast Protoplasts
Accumulation of chitin and glucan on S. cerevisiae and C. albicans protoplasts begins shortly after resuspension in the regeneration medium, and mannoprotein molecules also appear retained by the regenerating wall after 30–60 minutes in S. cerevisiae or after a longer lag period in C. albicans. Nevertheless, a considerable fraction of the synthesized mannoproteins, which in SDS-acrylamide gels exhibit a different pattern from that of wall mannoproteins of cells, are still released to the growth medium during at least eight hours. De novo synthesis of chitin synthase, but not of glucan synthase, is observed in S. cerevisiae from about 30 minutes after initiation of the regeneration process. …
An overview of semi-infinite programming theory and related topics through a generalization of the alternative theorems
We propose new alternative theorems for convex infinite systems which constitute the generalization of the corresponding toGale, Farkas, Gordan andMotzkin. By means of these powerful results we establish new approaches to the Theory of Infinite Linear Inequality Systems, Perfect Duality, Semi-infinite Games and Optimality Theory for non-differentiable convex Semi-Infinite Programming Problem.