0000000000161089

AUTHOR

J.e. Hoffmann

Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt

We argue that the production of mantle-derived or juvenile continental crust during the accretionary history of the Central Asian Orogenic Belt (CAOB) has been grossly overestimated. This is because previous assessments only considered the Palaeozoic evolution of the belt, whereas its accretionary history already began in the latest Mesoproterozoic. Furthermore, much of the juvenile growth in Central Asia occurred in late Permian and Mesozoic times, after completion of CAOB evolution, and perhaps related to major plume activity. We demonstrate from zircon ages and Nd–Hf isotopic systematics from selected terranes within the CAOB that many Neoproterozoic to Palaeozoic granitoids in the accre…

research product

High-temperature metamorphism and crustal melting at ca. 3.2 Ga in the eastern Kaapvaal craton, southern Africa

Abstract The question of whether high-grade metamorphism and crustal melting in the early Archaean were associated with modern-style plate tectonics is a major issue in unravelling early Earth crustal evolution, and the eastern Kaapvaal craton has featured prominently in this debate. We discuss a major ca. 3.2 Ga tectono-magmatic-metamorphic event in the Ancient Gneiss Complex (AGC) of Swaziland, a multiply deformed medium- to high-grade terrane in the eastern Kaapvaal craton consisting of 3.66–3.20 Ga granitoid gneisses and infolded greenstone remnants, metasedimentary assemblages and mafic dykes. We report on a 3.2 Ga granulite-facies assemblage in a metagabbro of the AGC of central Swazi…

research product

Chronology of the oldest supracrustal sequences in the Palaeoarchaean Barberton Greenstone Belt, South Africa and Swaziland

Abstract Zircon age data for felsic metavolcanic rocks of the Sandspruit and Theespruit formations, the two oldest supracrustal components in the Palaeoarchaean Barberton Greenstone Belt, show that these two successions are time-equivalent and constitute one single volcanic event at ca. 3530 Ma. The Sandspruit felsic rocks are ubiquitously metasomatized, intensely deformed and intruded by, and tectonically interlayered with, ca. 3450 Ma granitoid sills that are probably part of the Theespruit Pluton. One metasomatized Sandspruit sample contains abundant metamorphic zircons with a weighted mean 207Pb/206Pb age of 3220.1 ± 1.6 Ma, reflecting a widespread metamorphic event in parts of the east…

research product