0000000000161171

AUTHOR

Juan Barrios-aviles

Event-based encoding from digital magnetic compass and ultrasonic distance sensor for navigation in mobile systems

Event-based encoding reduces the amount of generated data while keeping relevant information in the measured magnitude. While this encoding is mostly associated with spiking neuromorphic systems, it can be used in a broad spectrum of tasks. The extension of event-based data representation to other sensors would provide advantages related to bandwidth reduction, lower computing requirements, increased processing speed and data processing. This work describes two event-based encoding procedures (magnitude-event and rate-event) for two sensors widely used in industry, especially for navigation in mobile systems: digital magnetic compass and ultrasonic distance sensor. Encoded data meet Address…

research product

Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and trac…

research product

Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neur…

research product

Less Data Same Information for Event-Based Sensors: A Bioinspired Filtering and Data Reduction Algorithm

Sensors provide data which need to be processed after acquisition to remove noise and extract relevant information. When the sensor is a network node and acquired data are to be transmitted to other nodes (e.g., through Ethernet), the amount of generated data from multiple nodes can overload the communication channel. The reduction of generated data implies the possibility of lower hardware requirements and less power consumption for the hardware devices. This work proposes a filtering algorithm (LDSI&mdash

research product