0000000000161260

AUTHOR

Adolfo Esteban-martin

Experimental approach to transverse wave-number selection in cavity nonlinear optics

Spontaneous transverse pattern formation is experimentally studied in a ${\text{BaTiO}}_{3}$ photorefractive oscillator under degenerate four-wave mixing conditions. A near self-imaging resonator of high Fresnel number and quasi-one-dimensional in the transverse plane is used. A fine control technique of the cavity detuning, $\ensuremath{\Omega}$, is described. It allows a precise study of the relation of $\ensuremath{\Omega}$ with the transverse wave number ${k}_{\ensuremath{\perp}}$ of the roll patterns selected by the system. The law ${k}_{\ensuremath{\perp}}^{2}=\ensuremath{-}\ensuremath{\Omega}∕a$ is verified, which evidences that wave-number selection is mainly dictated by the cavity …

research product

Hysteretic nonequilibrium Ising-Bloch transition

We show that a parametrically driven cubic-quintic complex Ginzburg-Landau equation exhibits a hysteretic nonequilibrium Ising-Bloch transition for large enough quintic nonlinearity. These results help to understand the recent experimental observation of this pheomenon [A. Esteban-Martin et al., Phys. Rev. Lett. 94, 223903 (2005)].

research product

Interferometric Phase Retrieval in Optical Transient Detection

A transient detection imaging system (TDI), also known as optical novelty filter, is an adaptive interferometric device that detects temporal changes in a scene while suppressing its static parts. Removal of background improves contrast and helps visualizing and measuring intensity and phase. Following the first TDI proposal by Cudney et al. [1] , most TDI systems are based on photorefractive two-wave mixing [2] . Previous works rely on conventional intensity measurements, where partial information about input signal phase changes are obtained by previous calibration using an input phase-output intensity transfer function of the particular system.

research product

Experimental demonstration of hyperbolic patterns.

We give experimental evidence of hyperbolic patterns in a nonlinear optical resonator. Such transverse patterns are a new kind of 2D dissipative structures, characterized by a distribution of the active modes along hyperbolas in the transverse wave-vector domain, in contrast with the usual (elliptic) patterns where the active modes distribute along rings. The hyperbolic character is realized by manipulating diffraction inside the optical resonator with cylindrical lenses. We also investigate theoretically hyperbolic patterns in corresponding Swift-Hohenberg models.

research product

Controlled Observation of a Nonequilibrium Ising-Bloch Transition in a Nonlinear Optical Cavity

We describe the controlled observation of the nonequilibrium Ising-Bloch transition in a broad area nonlinear optical cavity, namely, a quasi-1D single longitudinal-mode photorefractive oscilator in a degenerate four-wave mixing configuration. Our experimental technique allows for the controlled injection of the domain walls. We use cavity detuning as control parameter and find that both Ising and Bloch walls can exist for the same detuning values within a certain interval of detunings, i.e., the Ising-Bloch transition is hysteretic in our case. A complex Ginzburg-Landau model is used for supporting the observations.

research product

Ising-Bloch transition in 2D degenerate wave mixing

We show experimentally and theoretically the existence of a 2D Ising-Bloch transition in the field generated by degenerate four wave mixing in a BaTiO3-resonator.

research product

Ising and Bloch walls of phase domains in two-dimensional parametric wave mixing

Oscillators driven by a degenerate wave mixing process are bistable in the phase of the generated radiation. In systems with a large Fresnel number, domains of opposite phase form therefore spontaneously. A simple model predicts a real field in which phase domains are separated by Ising-type walls. In this paper we show experimentally (using complex field reconstruction from measurements) and theoretically (by an extended model) that the optical field can be real as well as complex valued and that complex field fronts are related to the front curvature.

research product

Intensity spiral patterns in a semiconductor microresonator

Spiral waves appear frequently in nature. They have been studied, e.g., in hydrodynamic systems, chemical reactions, and in a large variety of biological and physical systems [Grill et al., Phys. Rev. Lett. 75, 3368 (1995); Goryachev and Kapral, Phys. Rev. Lett. 76, 1619 (1996)]. In contrast to chemical and hydrodynamic processes where the field amplitude exhibits the spiral patterns (intensity spirals), in optics the spiral structures relate generally to the phase structure of the optical field (so-called 'optical vortices' [Lugiato et al., Adv. At., Mol., Opt. Phys. 40, 229 (1999); Arecchi et al., Phys. Rep. 318, 1 (1999); Weiss et al., Appl. Phys. B:Lasers Opt. B68, 151 (1999)]). Thus th…

research product

Interferometric measurement of complex-field changes in transient detection imaging.

We report an experimental method that combines nonlinear-crystal-based transient detection imaging (TDI) with interferometric complex-field retrieval. The system allows measuring both phase and amplitude of a dynamic scene while suppressing stationary background. Theoretical and experimental results prove the linear relation existing between input and output phases, as well as the benefits of phase analysis for both detection and measurement with high resolutions of λ/30, even under noisy conditions. Additionally, we present experimental evidence of the remarkable ability of the technique to detect phase sign changes in the scene —what we call differential-phase TDI— showing great detection…

research product

Control and steering of phase domain walls

We show experimentally the feasibility of optically controlled location, individual addressing/erasure and steering of phase domain walls by injection of coherent addressing pulses into a phase-locked four-wave-mixing photorefractive oscillator.

research product

Experimental demonstration of phase bistability in a broad-area optical oscillator with injected signal

We demonstrate experimentally that a broad-area laserlike optical oscillator (a nondegenerate photorefractive oscillator) with structured injected signal displays two-phase patterns. The technique [de Valc\'arcel and Staliunas, Phys. Rev. Lett. 105, 054101 (2010)] consists in spatially modulating the injection, so that its phase alternates periodically between two opposite values, i.e., differing by $\ensuremath{\pi}$.

research product

Bistable phase locking of a nonlinear optical cavity via rocking: Transmuting vortices into phase patterns.

We report experimental observation of the conversion of a phase-invariant nonlinear system into a phase-locked one via the mechanism of rocking [G. J. de Valcarcel and K. Staliunas, Phys. Rev. E 67, 026604 (2003)]. This conversion results in that vortices of the phase-invariant system are being replaced by phase patterns such as domain walls. The experiment is carried out on a photorefractive oscillator in two-wave mixing configuration.A model for the experimental device is given that reproduces the observed behavior.

research product