0000000000161302
AUTHOR
Wenya Liu
Group Nonnegative Matrix Factorization with Sparse Regularization in Multi-set Data
Constrained joint analysis of data from multiple sources has received widespread attention for that it allows us to explore potential connections and extract meaningful hidden components. In this paper, we formulate a flexible joint source separation model termed as group nonnegative matrix factorization with sparse regularization (GNMF-SR), which aims to jointly analyze the partially coupled multi-set data. In the GNMF-SR model, common and individual patterns of particular underlying factors can be extracted simultaneously with imposing nonnegative constraint and sparse penalty. Alternating optimization and alternating direction method of multipliers (ADMM) are combined to solve the GNMF-S…
One Dimensional Convolutional Neural Networks for Seizure Onset Detection Using Long-term Scalp and Intracranial EEG
Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalogram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection of seizures not only reflects the efficiency of the algorithm, but also greatly reduces the burden of manual detection during long-term electroencephalogram (EEG) recording. In this work, a stacked one-dimensional convolutional neural network (1D-CNN) model combined with a random selection and data augmentation (RS-DA) strategy is proposed for seizure onset detection. Firstly, we segmented the long-term EEG signals using 2-sec sliding windows. Then, the 2-sec interictal and ictal segments w…
Spatiotemporal dynamics of activation in motor and language areas suggest a compensatory role of the motor cortex in second language processing
The involvement of the motor cortex in language understanding has been intensively discussed in the framework of embodied cognition. Although some studies have provided evidence for the involvement of the motor cortex in different receptive language tasks, the role that it plays in language perception and understanding is still unclear. In the present study, we explored the degree of involvement of language and motor areas in a visually presented sentence comprehension task, modulated by language proficiency (L1: native language, L2: second language) and linguistic abstractness (literal, metaphorical, and abstract). Magnetoencephalography data were recorded from 26 late Chinese learners of …
Identifying Oscillatory Hyperconnectivity and Hypoconnectivity Networks in Major Depression Using Coupled Tensor Decomposition
AbstractPrevious researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms of MDD. Cortical electroencephalography (EEG) oscillations act as coordinators to connect different brain regions, and various assemblies of oscillations can form different networks to support different cognitive tasks. Studies have demonstrated that the dysconnectivity of EEG oscillatory networks is related with MDD. In this study, we investigated the oscillatory hyperconnectivity and hypoconnectivity networks in MDD under a naturalistic and continuous stimuli…
Functional connectivity of major depression disorder using ongoing EEG during music perception
Abstract Objective The functional connectivity (FC) of major depression disorder (MDD) has not been well studied under naturalistic and continuous stimuli conditions. In this study, we investigated the frequency-specific FC of MDD patients exposed to conditions of music perception using ongoing electroencephalogram (EEG). Methods First, we applied the phase lag index (PLI) method to calculate the connectivity matrices and graph theory-based methods to measure the topology of brain networks across different frequency bands. Then, classification methods were adopted to identify the most discriminate frequency band for the diagnosis of MDD. Results During music perception, MDD patients exhibit…
Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization
Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different groups of participants are expected to have common or highly correlated brain activities and some individual dynamics. In this study, we proposed a data-driven shared and unshared feature extraction framework based on nonnegative and coupled tensor factorization, which aims to conduct group-level analysis for the EEG signals from major depression disorder (MDD) patients and healthy controls (HC) when freely listening to music. Constrained tensor factorization not only preserve…
Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition
Abstract Background Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. New method Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneo…
Exploring Oscillatory Dysconnectivity Networks in Major Depression During Resting State Using Coupled Tensor Decomposition
Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constr…
Network Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain
Dynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The p…