0000000000161303

AUTHOR

Xiulin Wang

0000-0002-8884-0973

showing 8 related works from this author

Group Nonnegative Matrix Factorization with Sparse Regularization in Multi-set Data

2021

Constrained joint analysis of data from multiple sources has received widespread attention for that it allows us to explore potential connections and extract meaningful hidden components. In this paper, we formulate a flexible joint source separation model termed as group nonnegative matrix factorization with sparse regularization (GNMF-SR), which aims to jointly analyze the partially coupled multi-set data. In the GNMF-SR model, common and individual patterns of particular underlying factors can be extracted simultaneously with imposing nonnegative constraint and sparse penalty. Alternating optimization and alternating direction method of multipliers (ADMM) are combined to solve the GNMF-S…

Computer scienceGroup (mathematics)020206 networking & telecommunications02 engineering and technologySparse approximationNon-negative matrix factorizationSet (abstract data type)Constraint (information theory)Computer Science::Computer Vision and Pattern Recognition0202 electrical engineering electronic engineering information engineeringSource separation020201 artificial intelligence & image processingJoint (audio engineering)Sparse regularizationAlgorithm2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct

Generalization of Linked Canonical Polyadic Tensor Decomposition for Group Analysis

2019

Real-world data are often linked with each other since they share some common characteristics. The mutual linking can be seen as a core driving force of group analysis. This study proposes a generalized linked canonical polyadic tensor decomposition (GLCPTD) model that is well suited to exploiting the linking nature in multi-block tensor analysis. To address GLCPTD model, an efficient algorithm based on hierarchical alternating least squa res (HALS) method is proposed, termed as GLCPTD-HALS algorithm. The proposed algorithm enables the simultaneous extraction of common components, individual components and core tensors from tensor blocks. Simulation experiments of synthetic EEG data analysi…

canonical polyadicComputer scienceGeneralizationNoise reductionlinked tensor decomposition020206 networking & telecommunications02 engineering and technologyIterative reconstructionhierarchical alternating least squares03 medical and health sciencessimultaneous extraction0302 clinical medicineGroup analysisCore (graph theory)0202 electrical engineering electronic engineering information engineeringTensor decompositionTensorAlgorithmRealization (systems)030217 neurology & neurosurgery
researchProduct

Identifying Oscillatory Hyperconnectivity and Hypoconnectivity Networks in Major Depression Using Coupled Tensor Decomposition

2021

AbstractPrevious researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms of MDD. Cortical electroencephalography (EEG) oscillations act as coordinators to connect different brain regions, and various assemblies of oscillations can form different networks to support different cognitive tasks. Studies have demonstrated that the dysconnectivity of EEG oscillatory networks is related with MDD. In this study, we investigated the oscillatory hyperconnectivity and hypoconnectivity networks in MDD under a naturalistic and continuous stimuli…

masennusElementary cognitive taskComputer scienceBiomedical EngineeringmusiikkiElectroencephalographyMusic listeningvärähtelytInternal MedicinemedicineHumansTensor decompositionEEGDepressive Disorder Majormedicine.diagnostic_testQuantitative Biology::Neurons and CognitionDepressionsignaalinkäsittelyGeneral NeuroscienceFunctional connectivityRehabilitationBrainComputer Science::Software Engineeringsignaalianalyysihermoverkot (biologia)ElectroencephalographyHyperconnectivitymajor depression disorder naturalistic music stimuli oscillatory networksMagnetic Resonance ImagingPotential biomarkersCorrelation analysiscoupled tensor decompositiondynamic functional connectivitykognitiivinen neurotiedeNeuroscienceMusicärsykkeet
researchProduct

Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization

2021

Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different groups of participants are expected to have common or highly correlated brain activities and some individual dynamics. In this study, we proposed a data-driven shared and unshared feature extraction framework based on nonnegative and coupled tensor factorization, which aims to conduct group-level analysis for the EEG signals from major depression disorder (MDD) patients and healthy controls (HC) when freely listening to music. Constrained tensor factorization not only preserve…

masennusmajor depressive disordersignaalinkäsittelymusiikkinaturalistic music stimulisignaalianalyysiNeurosciences. Biological psychiatry. NeuropsychiatryHuman Neuroscienceconstrained tensor factorizationbehavioral disciplines and activitiesBehavioral NeurosciencePsychiatry and Mental healthNeuropsychology and Physiological PsychologyNeurologyCANDECOMP/PARAFACaivotutkimusEEGärsykkeetBiological PsychiatryRC321-571Original ResearchFrontiers in Human Neuroscience
researchProduct

Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition

2019

Real-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group analysis in recent years, especially for simultaneous analysis of multi-block tensor data with common information. To address the multiblock tensor data, we propose a fast double-coupled nonnegative Canonical Polyadic Decomposition (FDC-NCPD) algorithm in this study, based on the linked CP tensor decomposition (LCPTD) model and fast Hierarchical Alternating Least Squares (Fast-HALS) algorithm. The proposed FDCNCPD algorithm enables simultaneous extraction of common components, i…

Computer sciencelinked CP tensor decomposition (LCPTD)02 engineering and technologySignal-to-noise ratiotensor decompositionConvergence (routing)0202 electrical engineering electronic engineering information engineeringDecomposition (computer science)TensorHigh orderta113konvergenssiconvergencesignal to noise ratio020206 networking & telecommunicationsbrain modelinghierarchical alternating least squares (HALS)Alternating least squaresCore (graph theory)coupled tensor decomposition020201 artificial intelligence & image processingAlgorithmsignal processing algorithmselectroencephalographymathematical modelCurse of dimensionality
researchProduct

Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition

2019

Abstract Background Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. New method Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneo…

0301 basic medicineAdultComputer sciencemusiikkiElectroencephalography03 medical and health sciencesYoung Adultcoupled0302 clinical medicinetensor decompositionEeg dataRobustness (computer science)medicineDecomposition (computer science)HumansmusicNonnegative tensorEEGSignal processingmedicine.diagnostic_testbusiness.industryGeneral NeuroscienceFunctional NeuroimagingBrainsignaalianalyysiPattern recognitionElectroencephalographySignal Processing Computer-AssistedMiddle Agedongoing EEGAlpha (programming language)030104 developmental biologyGroup analysisAuditory PerceptionnonnegativeArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsMusicärsykkeet
researchProduct

Exploring Oscillatory Dysconnectivity Networks in Major Depression During Resting State Using Coupled Tensor Decomposition

2022

Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constr…

mallintaminenmasennusBrain MappingDepressive Disorder Majoroscillatory networksDepressionRestneuraalilaskentamajor depression disorderBiomedical EngineeringBrainbrain modelingneuroverkottime-frequency analysisMagnetic Resonance Imagingtensorsmielenterveyshäiriötcoupled tensor decompositionNeural PathwaysHumansdynamic functional connectivityEEGaivotutkimusaivotelectroencephalographyIEEE Transactions on Biomedical Engineering
researchProduct

One Dimensional Convolutional Neural Networks for Seizure Onset Detection Using Long-term Scalp and Intracranial EEG

2021

Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalogram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection of seizures not only reflects the efficiency of the algorithm, but also greatly reduces the burden of manual detection during long-term electroencephalogram (EEG) recording. In this work, a stacked one-dimensional convolutional neural network (1D-CNN) model combined with a random selection and data augmentation (RS-DA) strategy is proposed for seizure onset detection. Firstly, we segmented the long-term EEG signals using 2-sec sliding windows. Then, the 2-sec interictal and ictal segments w…

intracranial electroencephalogram (iEEG)convolutional neural networks (CNN).signaalinkäsittelyscalp electroencephalogram (sEEG)epilepsyseizure detectionsignaalianalyysineuroverkotEEGepilepsia
researchProduct