0000000000161388
AUTHOR
Sandra Decker
Cylindrical Brush Polymers with Polysarcosine Side Chains: A Novel Biocompatible Carrier for Biomedical Applications
Cylindrical brush polymers constitute promising polymeric drug delivery systems (nanoDDS). Because of the densely grafted side chains such structures may intrinsically exhibit little protein adsorption (“stealth” effect) while providing a large number of functional groups accessible for bioconjugation reactions. Polysarcosine (PSar) is a highly water-soluble, nonionic and nonimmunogenic polypeptoid based on the endogenous amino acid sarcosine (N-methyl glycine). Here we report on the synthesis, characterization and biocompatibility of cylindrical brush polymers with either polysarcosine side chains or poly-l-lysine-b-polysarcosine side chains. The latter leads to block copolypept(o)id based…
Protein corona–mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses
Background Nanoparticle (NP)–based vaccines are attractive immunotherapy tools because of their capability to codeliver antigen and adjuvant to antigen-presenting cells. Their cellular distribution and serum protein interaction ("protein corona") after systemic administration and their effect on the functional properties of NPs is poorly understood. Objectives We analyzed the relevance of the protein corona on cell type–selective uptake of dextran-coated NPs and determined the outcome of vaccination with NPs that codeliver antigen and adjuvant in disease models of allergy. Methods The role of protein corona constituents for cellular binding/uptake of dextran-coated ferrous nanoparticles (DE…
Selective Uptake of Cylindrical Poly(2-Oxazoline) Brush-AntiDEC205 Antibody-OVA Antigen Conjugates into DEC-Positive Dendritic Cells and Subsequent T-Cell Activation
To achieve specific cell targeting by various receptors for oligosaccharides or antibodies, a carrier must not be taken up by any of the very many different cells and needs functional groups prone to clean conjugation chemistry to derive well-defined structures with a high biological specificity. A polymeric nanocarrier is presented that consists of a cylindrical brush polymer with poly-2-oxazoline side chains carrying an azide functional group on each of the many side chain ends. After click conjugation of dye and an anti-DEC205 antibody to the periphery of the cylindrical brush polymer, antibody-mediated specific binding and uptake into DEC205(+) -positive mouse bone marrow-derived dendri…