0000000000161833

AUTHOR

Francesco Vuolo

0000-0002-4823-1700

showing 3 related works from this author

Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory

2018

International audience; Clumping index (CI) is a measure of foliage aggregation relative to a random distribution of leaves in space. The CI can help with estimating fractions of sunlit and shaded leaves for a given leaf area index (LAI) value. Both the CI and LAI can be obtained from global Earth Observation data from sensors such as the Moderate Resolution Imaging Spectrometer (MODIS). Here, the synergy between a MODIS-based CI and a MODIS LAI product is examined using the theory of spectral invariants, also referred to as photon recollision probability ('p-theory'), along with raw LAI-2000/2200 Plant Canopy Analyzer data from 75 sites distributed across a range of plant functional types.…

0106 biological sciencesCanopyEarth observationPhoton010504 meteorology & atmospheric sciencesF40 - Écologie végétalehttp://aims.fao.org/aos/agrovoc/c_1920Soil Science01 natural sciencesMeasure (mathematics)http://aims.fao.org/aos/agrovoc/c_7701Multi-angle remote sensingProbability theoryhttp://aims.fao.org/aos/agrovoc/c_718Foliage clumping indexRange (statistics)http://aims.fao.org/aos/agrovoc/c_3081[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyComputers in Earth SciencesLeaf area indexhttp://aims.fao.org/aos/agrovoc/c_4039http://aims.fao.org/aos/agrovoc/c_4116Photon recollision probabilityhttp://aims.fao.org/aos/agrovoc/c_10672http://aims.fao.org/aos/agrovoc/c_32450105 earth and related environmental sciencesMathematicsRemote sensinghttp://aims.fao.org/aos/agrovoc/c_8114GeologyVegetationhttp://aims.fao.org/aos/agrovoc/c_5234http://aims.fao.org/aos/agrovoc/c_7558Leaf area indexhttp://aims.fao.org/aos/agrovoc/c_7273http://aims.fao.org/aos/agrovoc/c_1236http://aims.fao.org/aos/agrovoc/c_1556U30 - Méthodes de recherchehttp://aims.fao.org/aos/agrovoc/c_4026010606 plant biology & botanyhttp://aims.fao.org/aos/agrovoc/c_6124
researchProduct

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

2020

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesAtmospheric correctionFOS: Physical sciences02 engineering and technology15. Life on land01 natural sciencesAtomic and Molecular Physics and OpticsArticleComputer Science ApplicationsPhysics - Atmospheric and Oceanic PhysicsAtmospheric radiative transfer codesKrigingAtmospheric and Oceanic Physics (physics.ao-ph)RadianceSatelliteComputers in Earth SciencesLeaf area indexScale (map)Engineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Data service platform for sentinel-2 surface reflectance and value-added products: System use and examples

2016

This technical note presents the first Sentinel-2 data service platform for obtaining atmospherically-corrected images and generating the corresponding value-added products for any land surface on Earth (http://s2.boku.eodc.eu/). Using the European Space Agency’s (ESA) Sen2Cor algorithm, the platform processes ESA’s Level-1C top-of-atmosphere reflectance to atmospherically-corrected bottom-of-atmosphere (BoA) reflectance (Level-2A). The processing runs on-demand, with a global coverage, on the Earth Observation Data Centre (EODC), which is a public-private collaborative IT infrastructure in Vienna (Austria) for archiving, processing, and distributing Earth observation (EO) data (http://www.…

Earth observation010504 meteorology & atmospheric sciencesreflectanceComputer sciencetélédétection0211 other engineering and technologies02 engineering and technology01 natural sciences7. Clean energyConsistency (database systems)remote sensingTraitement du signal et de l'imageatmospheric correctionremote sensing;sentinel-2;atmospheric correction;Sen2Cor;LAI;broadband HDRFlcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSentinel-2; atmospheric correction; Sen2Cor; LAI; broadband HDRFbusiness.industrysentinel-2Settore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaSignal and Image processingVegetationReflectivitybroadband HDRFLAIatmosphèreSen2Cor13. Climate actionGeneral Earth and Planetary Scienceslcsh:QData centerData as a servicebusinessdonnée satellitaire[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct