0000000000161889

AUTHOR

T. Marqueño

showing 14 related works from this author

Gold(i) sulfide: Unusual bonding and an unexpected computational challenge in a simple solid

2019

We report the experimental high-pressure crystal structure and equation of state of gold(I) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of cov…

Bulk modulusMaterials science010405 organic chemistryGold(I) sulfideIonic bondingGeneral ChemistryCubic crystal system010402 general chemistry01 natural sciences0104 chemical sciencesElectronegativitychemistry.chemical_compoundChemical bondchemistryChemical physicsCovalent bondValence bond theory
researchProduct

An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures

2018

[EN] We report the formation of an ultrahigh CO2-loaded pure-SiO2, silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO, medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO, molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to th…

DiffractionChemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSynchrotron0104 chemical scienceslaw.inventionInorganic ChemistryChemical engineeringStructural stabilitylawThermalCompressibilityMoleculePhysical and Theoretical Chemistry0210 nano-technologyZeolitePorosity
researchProduct

Structural Behavior of Natural Silicate–Carbonate Spurrite Mineral, Ca5(SiO4)2(CO3), under High-Pressure, High-Temperature Conditions

2017

We report on high-pressure and high-temperature angle-dispersive synchrotron X-ray diffraction and high-pressure Raman data up to 27 GPa and 700 K for natural silicate carbonate Ca5(SiO4)2(CO3) spurrite mineral. No phase transition was found in the studied P–T range. The room-temperature bulk modulus of spurrite using Ne as the pressure-transmitting medium is B0 = 77(1) GPa with a first-pressure derivative of B0′ = 5.9(2). The structure compression is highly anisotropic, the b axis being approximately 30% more compressible than the a and c axes. The volumetric thermal expansivity value around 8 GPa was estimated to be 4.1(3) × 10–5 K–1. A comparison with intimately related minerals CaCO3 ca…

CalciteBulk modulus010504 meteorology & atmospheric sciencesCrystal chemistryAragoniteAnalytical chemistryengineering.material010502 geochemistry & geophysics01 natural sciencesSilicateInorganic Chemistrychemistry.chemical_compoundLarnitechemistryengineeringCarbonatePhysical and Theoretical ChemistrySpurrite0105 earth and related environmental sciencesInorganic Chemistry
researchProduct

Comparative study of the high-pressure behavior of ZnV2O6, Zn2V2O7, and Zn3V2O8

2020

We report a study of the high-pressure structural behavior of ZnV2O6, Zn2V2O2, and Zn3V2O8, which has been explored by means of synchrotron powder x-ray diffraction. We found that ZnV2O6 and Zn3V2O8 remain in the ambient-pressure structure up to 15 GPa. In contrast, in the same pressure range, Zn2V2O2 undergoes three phase transitions at 0.7, 3.0, and 10.8 GPa, respectively. Possible crystal structures for the first and second high-pressure phases are proposed. Reasons for the distinctive behavior of Zn2V2O2 are discussed. The compressibility of the different polymorphs has been determined. The response to pressure is found to be anisotropic in all the considered compounds and the room-temp…

Equation of stateBulk modulusPhase transitionMaterials scienceEquation of stateHigh-pressureMechanical EngineeringMetals and AlloysThermodynamics02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesX-ray diffractionOctahedronMechanics of MaterialsPhase transitionsX-ray crystallographyMaterials ChemistryCompressibilityVanadates0210 nano-technologyAnisotropy
researchProduct

Phase Stability of Natural Ni0.75Mg0.22Ca0.03CO3 Gaspeite Mineral at High Pressure and Temperature

2020

[EN] Divalent metal carbonates play an important role in Earth's carbon cycle, but the effect of chemical substitution is still poorly known. In this work, we have studied the structural and vibrational properties of natural mineral gaspeite (Ni0.75Mg0.22Ca0.03CO3) under high pressure and temperature using in situ synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. These experiments have been complemented by ab initio simulations. Synchrotron high-pressure XRD measurements at room temperature using He as the pressure transmitting medium have shown that the calcite-type structure is stable up to 23.3 GPa. A bulk modulus at zero pressure of B-0 = 105(2) GPa with B-0' …

Work (thermodynamics)MineralChemistryPhase stability02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesDivalent metal0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCarbon cycleGeneral EnergyChemical engineeringFISICA APLICADAHigh pressureGaspéitePhysical and Theoretical Chemistry0210 nano-technologyEarth (classical element)The Journal of Physical Chemistry C
researchProduct

Pressure and Temperature Effects on Low-Density Mg3Ca(CO3)4 Huntite Carbonate

2019

Pressure (P)–volume (V)–temperature (T) relations of huntite [Mg3Ca(CO3)4] have been determined in situ up to 5 GPa and 500 °C using a resistive-heated diamond-anvil cell and synchrotron X-ray diff...

In situMaterials scienceHuntiteAnalytical chemistry02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSynchrotron0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundGeneral EnergychemistrylawengineeringLow densityCarbonatePhysical and Theoretical Chemistry0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Structural evolution of CO2 filled pure silica LTA zeolite under high-pressure high-temperature conditions

2017

[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments…

Materials scienceSiliconGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesChemical reactionNegative thermal expansionPhysics - Chemical PhysicsMaterials ChemistryMoleculeZeoliteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographychemistry0210 nano-technologyStoichiometryPowder diffraction
researchProduct

High-Pressure High-Temperature Stability and Thermal Equation of State of Zircon-Type Erbium Vanadate.

2018

Inorganic chemistry 57(21), 14005 - 14012 (2018). doi:10.1021/acs.inorgchem.8b01808

DiffractionDYNAMICSEquation of statePhase boundaryThermodynamics02 engineering and technologyzircon010402 general chemistry01 natural sciencesThermal expansionInorganic Chemistrychemistry.chemical_compoundX-RAY-DIFFRACTIONPhase (matter)Physical and Theoretical ChemistryChemistryX-RAY-DIFFRACTION; DYNAMICS021001 nanoscience & nanotechnology5400104 chemical scienceshigh pressureScheeliteX-ray crystallographyddc:5400210 nano-technologyZirconInorganic chemistry
researchProduct

High-pressure phase transformations in NdVO4 under hydrostatic, conditions: a structural powder x-ray diffraction study

2019

Room temperature angle dispersive powder x-ray diffraction experiments on zircon-type NdVO4 were performed for the first time under quasi-hydrostatic conditions up to 24.5 GPa. The sample undergoes two phase transitions at 6.4 and 19.9 GPa. Our results show that the first transition is a zircon-to-scheelite-type phase transition, which has not been reported before, and contradicts previous non-hydrostatic experiments. In the second transition, NdVO4 transforms into a fergusonite-type structure, which is a monoclinic distortion of scheelite-type. The compressibility and axial anisotropy of the different polymorphs of NdVO4 are reported. A direct comparison of our results with former experime…

DiffractionPhase transitionEquation of stateMaterials scienceThermodynamics02 engineering and technologyzircon01 natural scienceszircon; scheelite; x-ray diffraction; high pressure; equation of state; phase transition; orthovanadatescheeliteorthovanadatePhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsAnisotropyequation of state021001 nanoscience & nanotechnologyCondensed Matter Physicshigh pressurex-ray diffractionphase transitionX-ray crystallographyCompressibility0210 nano-technologyMonoclinic crystal system
researchProduct

Polymorphism of praseodymium orthovanadate under high pressure

2021

Zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ has been studied at high pressures and room temperature by means of synchrotron powder x-ray diffraction. At room temperature, we observed the previously known zircon-to-monazite phase transition at 5.5(4) GPa and a second phase transition from monazite to a monoclinic structure at 12.7(8) GPa, which we identified as a $\mathrm{PbW}{\mathrm{O}}_{4}$-III-type phase. This conclusion is supported by our ab initio calculations, which also predict a scheelite-type phase to be stable at high pressure. Motivated by this finding, we subjected zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ samples to high pressure (7 GPa) and temperature (600, 800, and 1000 \if…

Phase transitionMaterials sciencePraseodymiumchemistry.chemical_elementKinetic energyPhysics::GeophysicsCondensed Matter::Materials Sciencechemistry.chemical_compoundCrystallographychemistryAb initio quantum chemistry methodsScheelitePhase (matter)MetastabilityMonoclinic crystal systemPhysical Review B
researchProduct

High-pressure polymorphs of gadolinium orthovanadate: X-ray diffraction, Raman spectroscopy, and ab initio calculations

2019

We present a study of the different high-pressure polymorphs of $\mathrm{GdV}{\mathrm{O}}_{4}$ and its stability. Powder x-ray diffraction and Raman experiments show a phase transition from a zircon- to a scheelite-type structure taking place at 6.8(4) GPa. Ab initio density functional theory calculations support this conclusion. The equations of state of these two phases are reported. In addition, we studied the pressure evolution of the Raman modes for the zircon and scheelite phases, showing good agreement between calculations and experiments. For the sake of completeness, we performed optical-absorption measurements up to 16 GPa, showing a band-gap collapse at the transition point. Beyo…

Phase transitionMaterials scienceAb initioSTRUCTURAL STABILITYPhysics::GeophysicsELECTRONIC-PROPERTIESCondensed Matter::Materials Sciencesymbols.namesakeCrystallographyTransition pointBRILLOUIN-SCATTERINGAb initio quantum chemistry methodsX-ray crystallographysymbolsCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal systemELECTRONIC-PROPERTIES STRUCTURAL STABILITY BRILLOUIN-SCATTERINGRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct

Post-tilleyite, a dense calcium silicate-carbonate phase

2019

Scientific reports 9(1), 7898 (2019). doi:10.1038/s41598-019-44326-9

0301 basic medicineMaterials scienceINITIO MOLECULAR-DYNAMICSTRANSFORMATIONSCoordination numberAnalytical chemistrylcsh:MedicineZONEArticle03 medical and health sciencessymbols.namesakechemistry.chemical_compoundRAMAN0302 clinical medicineX-RAY-DIFFRACTIONPhase (matter)HIGH-PRESSUREGALUSKINITElcsh:ScienceCondensed-matter physicsMultidisciplinaryREFINEMENTlcsh:R600MineralogyEQUATION-OF-STATESPURRITE030104 developmental biologyCalcium carbonatechemistryCalcium silicatesymbolsCarbonatelcsh:QRaman spectroscopyddc:600Spurrite030217 neurology & neurosurgeryEarth (classical element)Scientific Reports
researchProduct

Lattice dynamics of zircon-type NdVO4 and scheelite-type PrVO4 under high-pressure

2021

Abstract Zircon-type NdVO4 and scheelite-type PrVO4 have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported by ab initio calculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase …

Phase transitionMaterials scienceType (model theory)Condensed Matter PhysicsMolecular physicssymbols.namesakechemistry.chemical_compoundchemistryAb initio quantum chemistry methodsHigh pressureMetastabilityScheelitesymbolsGeneral Materials ScienceRaman spectroscopyZirconJournal of Physics: Condensed Matter
researchProduct

Gold(i) sulfide: unusual bonding and an unexpected computational challenge in a simple solid† †Electronic supplementary information (ESI) available: …

2019

Cubic cuprite-type gold(i) sulfide presents unique chemical bonding, which makes it unmodelable using current DFT methods, and a computational challenge.

ChemistryChemical Science
researchProduct