6533b856fe1ef96bd12b1cfe
RESEARCH PRODUCT
Structural evolution of CO2 filled pure silica LTA zeolite under high-pressure high-temperature conditions
José L. JordáDavid Santamaría-pérezDaniel ErrandoneaAdam MahklufFernando ReyS. G. MacleodCatalin PopescuJavier Ruiz-fuertesDominik DaisenbergerC. P. McguireRaquel Chuliá-jordánAbby KavnerT. Marqueñosubject
Materials scienceSiliconGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesChemical reactionNegative thermal expansionPhysics - Chemical PhysicsMaterials ChemistryMoleculeZeoliteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographychemistry0210 nano-technologyStoichiometryPowder diffractiondescription
[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments up to 750 K allow us to estimate the thermal expansivity at P approximate to 5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C-O and Si-O distances between molecular and framework atoms.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |