0000000000020522

AUTHOR

Fernando Rey

showing 37 related works from this author

Use of alkylarsonium directing agents for the synthesis and study of zeolites

2019

[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS)…

X-ray absorption spectroscopyChemistrySulfoniumOrganic ChemistryGeneral ChemistryOniumAlkylarsoniumCatalysislaw.inventionArsenicchemistry.chemical_compoundCrystallographyCompostos orgànics SíntesiStructure-directing agentslawCationsQUIMICA ANALITICAZeolitesMoleculePhosphoniumCrystallizationZeoliteMaterialsPowder diffraction
researchProduct

Cobalt Metal-Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media

2020

A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect"during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafi…

Aqueous solutionOxygen evolutionStackingIonic bondingchemistry.chemical_elementGeneral ChemistryCobaltQuímicaOverpotential010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCatalysis0104 chemical scienceschemistry.chemical_compoundColloid and Surface ChemistryQUIMICA ORGANICAchemistryChemical engineeringPyridineQUIMICA ANALITICACobalt
researchProduct

A highly stable and hierarchical tetrathiafulvalene-based metal organic framework with improved performance as a solid catalyst

2018

[EN] Herein we report the synthesis of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, which shows a non-interpenetrated hierarchical crystal structure with mesoporous one-dimensional channels of ca. 3 nm and orthogonal microporous channels of ca. 1 nm. This highly stable MOF (aqueous solution with pH values ranging from 2 to 11 and different organic solvents), which possesses the well-known [Fe3(¿3-O)(COO)6] secondary building unit, has proven to be an efficient catalyst for the aerobic oxidation of dibenzothiophenes.

Solucions polimèriquesMaterials scienceQuímica organometàl·licaCrystal structure010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundQUIMICA ORGANICAMOFAqueous solution010405 organic chemistryGeneral ChemistryMicroporous material0104 chemical sciencesImproved performanceChemistryHighly stableChemical engineeringchemistryTetrathiafulvaleneMetal-organic frameworkCatalystMesoporous materialTetrathiafulvalene
researchProduct

An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures

2018

[EN] We report the formation of an ultrahigh CO2-loaded pure-SiO2, silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO, medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO, molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to th…

DiffractionChemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSynchrotron0104 chemical scienceslaw.inventionInorganic ChemistryChemical engineeringStructural stabilitylawThermalCompressibilityMoleculePhysical and Theoretical Chemistry0210 nano-technologyZeolitePorosity
researchProduct

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

2016

[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.

chemistry.chemical_classificationMaterials scienceInorganic chemistryCrystalline materialsSpin transitionSorption02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryPhysisorptionchemistryChemical physicsSpin crossoverMoleculeIsostructural0210 nano-technology
researchProduct

Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution

2019

[EN] The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co-2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co-2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co-2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co-2-MOF@Nafion) with great resistance to hydrolysis in aqu…

Materials scienceCobalt clusterLibrary scienceOxygen evolution reaction and gas storage02 engineering and technologyCobalt010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCobalt MOF0104 chemical sciencesQUIMICA ORGANICAQUIMICA ANALITICACobalt metalGeneral Materials Science0210 nano-technologyElectrocatalysisMaterials
researchProduct

Computational screening of structure directing agents for the synthesis of zeolites. A simplified model

2018

Abstract Zeolite micropores become more energetically stable by the occlusion of organic structure directing agents (templates). This energetic stabilisation, if approximated by van der Waals zeo-template interactions, can be calculated in a fast way by using modern computing techniques incorporating big data handling algorithms for massive screening. A software suite is presented which calculates an arbitrarily large 2-D matrix (template×zeolite) giving the zeo-template van der Waals interaction energy corresponding to the minimum energy conformation assuming one template molecule in a pure silica zeolite unit cell. With the goal of simplicity, the software only needs two coordinate input …

Physics010405 organic chemistryStructure (category theory)010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical sciencesInorganic Chemistrysymbols.namesakeChemical physicssymbolsGeneral Materials Sciencevan der Waals forceZeoliteZeitschrift für Kristallographie - Crystalline Materials
researchProduct

A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite

2011

[EN] A new aluminosilicate zeolite (ITQ-39) has been synthesized. This is an extensively faulted structure with very small domains that makes the structure elucidation very difficult. However, a combination of adsorption spectroscopy and reactivity studies with selected probe molecules suggests that the pore structure of ITQ-39 is related to that of Beta zeolite, with a three-directional channel system with large pores (12-MR), but with an effective pore diameter between those of Beta and ZSM-5, or a three-directional channel system with interconnected large (12-MR) and medium pores (10-MR). The pore topology of ITQ-39 is very attractive for catalysis and shows excellent results for the pre…

CumeneInorganic chemistryGeneral ChemistryMolecular sieveBiochemistryCatalysisCatalysischemistry.chemical_compoundColloid and Surface ChemistryAdsorptionQUIMICA ORGANICAchemistryAluminosilicateReactivity (chemistry)ZSM-5Zeolite
researchProduct

Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process

2013

et al.

Phase transitionMaterials scienceGeneral ChemistryMicroporous materialGeneral MedicineCatalysisX-ray diffractionPropenechemistry.chemical_compoundCrystallographyQUIMICA ORGANICAAdsorptionchemistryChemical engineeringPhase transitionsPropaneFISICA APLICADAScientific methodX-ray crystallographyZeolitesAdsorptionHigh-pressure chemistryZeoliteAngewandte Chemie - International Edition
researchProduct

V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase

2001

Well-organised V-containing MCM-41 and -48 (0.3‐1 wt.% of V content) have been synthesised by one-pot synthesis or by grafting using VOSO4 or VOCl3 as V sources, respectively. The samples before and after the calcination step have been characterised by several physicochemical techniques (Ar and N2 adsorption, XRD, diffuse reflectance-UV‐VIS (DR-UV‐VIS) spectroscopy, temperature-programmed reduction). It was found that V species in the as-prepared catalysts were mainly as vanadyl ions (VO 2C ), while highly dispersed V 5C species with tetrahedral coordination were observed in the calcined materials. The catalytic behaviour of the calcined materials for the gas phase oxidation of propane has …

ChemistryProcess Chemistry and TechnologyInorganic chemistryHeterogeneous catalysisMolecular sieveCatalysisCatalysislaw.inventionchemistry.chemical_compoundAdsorptionMCM-41lawPropaneCalcinationMesoporous materialApplied Catalysis A: General
researchProduct

Structural evolution of CO2 filled pure silica LTA zeolite under high-pressure high-temperature conditions

2017

[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments…

Materials scienceSiliconGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesChemical reactionNegative thermal expansionPhysics - Chemical PhysicsMaterials ChemistryMoleculeZeoliteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographychemistry0210 nano-technologyStoichiometryPowder diffraction
researchProduct

Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature.

2016

Correspondence: Strongly-driven Re+CO 2 redox reaction at high-pressure and high-temperature

Hot TemperatureScienceGeneral Physics and AstronomyMineralogy010402 general chemistry01 natural sciencesRedoxCarbon-DioxideGeneral Biochemistry Genetics and Molecular BiologyHot Temperaturechemistry.chemical_compound0103 physical sciencesTEORIA DE LA SEÑAL Y COMUNICACIONESCorrespondencePressure010306 general physicsMultidisciplinaryChemistryQTemperatureOxidation reductionSilicaGeneral ChemistryCarbon Dioxide0104 chemical sciencesChemical engineeringHigh pressureCarbon dioxideOxidation-Reduction
researchProduct

Identification of New Templates for the Synthesis of BEA, BEC, and ISV Zeolites Using Molecular Topology and Monte Carlo Techniques

2020

The presence of organic structure directing agents (templates) in the synthesis of zeolites allows the synthesis to be directed, in many cases, toward structures in which there is a large stabilization between the template and the zeolite micropore due to dispersion interactions. Although other factors are also important (temperature, pH, Si/Al ratio, etc.), systems with strong zeolite-template interactions are good candidates for an application of new computational algorithms, for instance those based in molecular topology (MT), that can be used in combination with large databases of organic molecules. Computational design of new templates allows the synthesis of existing and new zeolites …

Models MolecularQuantitative structure–activity relationshipMaterials science010304 chemical physicsGeneral Chemical EngineeringMonte Carlo methodGeneral ChemistryMicroporous materialLibrary and Information Sciences01 natural sciences0104 chemical sciencesComputer Science Applications010404 medicinal & biomolecular chemistryIdentification (information)Template0103 physical sciencesZeolitesMoleculeMinificationMolecular topologyBiological systemMonte Carlo MethodJournal of Chemical Information and Modeling
researchProduct

Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …

Zeolitic imidazolate frameworksStorage02 engineering and technologyOverpotential010402 general chemistryMetal-Organic frameworks01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryImidazolateMaterialsThermal-StabilityTafel equationNanocompositeChemistryOxygen evolutionElectrocatalystsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemisorptionPhysical chemistryMetal-organic frameworkAdsorptionCristalls0210 nano-technologyOxygen evolutionZeolitic imidazolate framework
researchProduct

Gas confinement in compartmentalized coordination polymers for highly selective sorption

2016

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compar…

Solucions polimèriquesContext (language use)02 engineering and technologyNeutron scattering010402 general chemistry01 natural sciencescomplex mixturesMolecular dynamicsAdsorptionOrganic chemistryPorositychemistry.chemical_classificationChemistrySorptionQuímicaGeneral ChemistryPolymer021001 nanoscience & nanotechnologyeye diseases3. Good health0104 chemical sciencesChemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringsense organs0210 nano-technologyPorous medium
researchProduct

Spin-Crossover Modification through Selective CO2 Sorption

2013

[EN] We present a spin-crossover Fe-II coordination polymer with no permanent channels that selectively sorbs CO2 over N-2. The one-dimensional chains display internal voids of similar to 9 angstrom diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O=C=O(delta(-))center dot center dot center dot pi interactions. This physisorption modifies the spin transition, producing a 9 K increase in T-1/2.

Diffraction010405 organic chemistryMagnetismChemistryCoordination polymerStereochemistryMagnetismSpin transitionSorptionGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciences3. Good healthchemistry.chemical_compoundCrystallographyColloid and Surface ChemistryPhysisorptionSpin crossoverMoleculeCO2 adsorptionMOFJournal of the American Chemical Society
researchProduct

CCDC 1473649: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate carbon dioxide]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910863: Experimental Crystal Structure Determination

2019

Related Article: Sara Sáez-Ferre, Christian W. Lopes, Jorge Simancas, Alejandro Vidal-Moya, Teresa Blasco, Giovanni Agostini, Guillermo Mínguez Espallargas, Jose L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|Chem.-Eur.J.|25|16390|doi:10.1002/chem.201904043

Space GroupCrystallographytetraethylarsanium iodide sesquihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910547: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate]Experimental 3D Coordinates
researchProduct

CCDC 1473650: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate ethene]Experimental 3D Coordinates
researchProduct

CCDC 1440481: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-11'-([11'-biphenyl)-44'-diylbis(methylene)]bis(1H-tetrazole))-iron(ii) bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 1899779: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(bis(mu-2-methylbenzimidazolato)-iron)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1579606: Experimental Crystal Structure Determination

2018

Related Article: Manuel Souto, Andrea Santiago-Portillo, Miguel Palomino, Iñigo J. Vitórica-Yrezábal, Bruno J. C. Vieira, João C. Waerenborgh, Susana Valencia, Sergio Navalón, Fernando Rey, Hermenegildo García, Guillermo Mínguez Espallargas|2018|Chemical Science|9|2413|doi:10.1039/C7SC04829G

Space GroupCrystallographycatena-((mu-oxo)-hexakis(mu-acetato)-triaqua-tri-iron tris(mu-44'-{2-[45-bis(4-carboxyphenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-bis(mu-oxo)-tetra-aqua-dihydroxy-hexa-iron unknown solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1440482: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

catena-[tris(mu-11'-((11'-biphenyl)-44'-diylbis(methylene))bis(1H-tetrazole))-iron bis(tetrafluoroborate)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825894: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal Systemcatena-(bis(mu-2-methylimidazolato)-iron unknown solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439097: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 910548: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal Systemcatena-[tris(mu~2~-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron diperchlorate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1827597: Experimental Crystal Structure Determination

2018

Related Article: Tomas Marqueño, David Santamaria-Perez, Javier Ruiz-Fuertes, Raquel Chuliá-Jordán, Jose L. Jordá, Fernando Rey, Chris McGuire, Abby Kavner, Simon MacLeod, Dominik Daisenberger, Catalin Popescu, Placida Rodriguez-Hernandez, Alfonso Muñoz|2018|Inorg.Chem.|57|6447|doi:10.1021/acs.inorgchem.8b00523

catena-[octatetracontaoxa-tetracosa-silicon tetrakis(carbon dioxide)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439096: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1899778: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-2-ethylimidazolato)-iron)Experimental 3D Coordinates
researchProduct

CCDC 1473651: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate methane]Experimental 3D Coordinates
researchProduct

CCDC 1473652: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

catena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) carbon dioxide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994492: Experimental Crystal Structure Determination

2020

Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos|2020|J.Am.Chem.Soc.|142|19198|doi:10.1021/jacs.0c08882

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[([mu-22'-bipyridine]-44'-dicarboxylato)-(pyridine)-cobalt(ii) pyridine solvate]Experimental 3D Coordinates
researchProduct

CCDC 1473654: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) methane]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1898281: Experimental Crystal Structure Determination

2020

Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Miguel Palomino, Guillermo Mínguez Espallargas, José L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|ACS Applied Materials and Interfaces|11|46658|doi:10.1021/acsami.9b13655

Space GroupCrystallographycatena-[bis(mu-benzene-135-tricarboxylato)-tris(NN-dimethylformamide)-pyridine-tri-cobalt NN-dimethylformamide solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473653: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) ethene]Experimental 3D Coordinates
researchProduct

CCDC 921439: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-Phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate ethanol solvate hemihydrate]Experimental 3D Coordinates
researchProduct