0000000000011937
AUTHOR
David Santamaría-pérez
Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure
In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa2S4) at high pressures. This compound belongs to the family of AB(2)X(4) ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa2S4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pres…
Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals
We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ~30nm) and 10 mol % Fe-doped tin dioxide (particle size ~18nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ~13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a …
Gold(i) sulfide: Unusual bonding and an unexpected computational challenge in a simple solid
We report the experimental high-pressure crystal structure and equation of state of gold(I) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of cov…
High-pressure study of the behavior of mineral barite by x-ray diffraction
In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and…
Structural and vibrational behavior of cubic Cu1.80(3)Se cuprous selenide, berzelianite, under compression
[EN] We have performed an experimental study of the crystal structure and lattice dynamics of cubic Cu1.80(3)Se at ambient temperature and high pressures. Two reversible phase transitions were found at 2.9 and 8.7 GPa. The indexation of the angle-dispersive synchrotron x-ray diffraction patterns suggests a large orthorhombic cell and a monoclinic cell for the high-pressure phases. Raman measurements provide additional information on the local structure. The compressibility of the three ambient temperature phases has been determined and compared to that of other sulphides and selenides.
High-pressure structural and lattice dynamical study ofHgWO4
We have synthesized monoclinic mercury tungstate $({\text{HgWO}}_{4})$ and characterized its structural and vibrational properties at room conditions. Additionally, we report the structural and lattice dynamical behavior of ${\text{HgWO}}_{4}$ under high pressure studied by means of x-ray diffraction and Raman-scattering measurements up to 16 GPa and 25 GPa, respectively. The pressure dependence of the structural parameters and Raman-active first-order phonons of monoclinic $C2/c$ ${\text{HgWO}}_{4}$ are discussed in the light of our theoretical first-principles total-energy and lattice dynamics calculations. Our measurements show that the monoclinic phase of ${\text{HgWO}}_{4}$ is stable u…
Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneo…
Exploring the Chemical Reactivity between Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-Temperature Conditions
The role of carbon dioxide, CO2, as oxidizing agent at high pressures and temperatures is evaluated by studying its chemical reactivity with three transition metals: Au, Pt, and Re. We report systematic X-ray diffraction measurements up to 48 GPa and 2400 K using synchrotron radiation and laser-heating diamond-anvil cells. No evidence of reaction was found in Au and Pt samples in this pressure–temperature range. In the Re + CO2 system, however, a strongly–driven redox reaction occurs at P > 8 GPa and T > 1500 K, and orthorhombic β-ReO2 is formed. This rhenium oxide phase is stable at least up to 48 GPa and 2400 K and was recovered at ambient conditions. Raman spectroscopy data confirm graph…
Crystal structure of BaCa(CO3)2 alstonite carbonate and its phase stability upon compression
Authors thank the financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN) and the Agencia Estatal de Investigación under projects MALTA Consolider Ingenio 2010 network (MAT2015-71070- REDC) and PGC2018-097520-A-I00 (cofinanced by EU FEDER funds) and from the Generalitat Valenciana under project PROMETEO/2018/123. D.S.-P. and A.O.R. acknowledge the financial support of the Spanish MINECO for RyC-2014-15643 and RyC-2016-20301 Ramón y Cajal grants, respectively. C.P. acknowledges the financial support from the Spanish Ministerio de Economia y Competitividad (MINECO project FIS2017-83295-P). Authors also thank Dr. Nicolescu and the Mineralogy and Meteoritic…
Structural and vibrational study of cubic Sb2O3under high pressure
We report an experimental and theoretical study of antimony oxide (Sb${}_{2}$O${}_{3}$) in its cubic phase (senarmontite) under high pressure. X-ray diffraction and Raman scattering measurements up to 18 and 25 GPa, respectively, have been complemented with ab initio total-energy and lattice-dynamics calculations. X-ray diffraction measurements do not provide evidence of a space-group symmetry change in senarmontite up to 18 GPa. However, Raman scattering measurements evidence changes in the pressure coefficients of the Raman mode frequencies at 3.5 and 10 GPa, respectively. The behavior of the Raman modes with increasing pressure up to 25 GPa is fully reproduced by the lattice-dynamics cal…
Infrared study of α–SiO2 single crystal under high pressure
We have measured high pressure α-quartz reflectance spectra in the mid infrared. We used single crystals, taking full profit of polarization. The quality of the spectra allows fitting the reflectance spectra. We have characterized the pressure evolution of E and A2 modes with increased precision, even in the spectral regions where they overlap. In addition, we have determined the TO-LO splitting of each mode. Some of the A2 modes show dramatic pressure variations of the LO-TO splitting, which cannot be explained only by changes in length and ionicity of individual bonds, requiring a new mechanism. We suggest that rotation of the SiO4 tetrahedra plays a fundamental role. We have also determi…
Crystal Chemistry of CdIn2S4, MgIn2S4, and MnIn2S4 Thiospinels under High Pressure
We report X-ray diffraction measurements in CdIn2S4, MgIn2S4, and MnIn2S4 thiospinels at room temperature and high pressures. The pressure dependences of the structural parameters have been determined and compared to those from theoretical calculations. It is found that the three thiospinels have similar bulk moduli (B-0) between 75 and 80 GPa (B-0' similar to 3). The degree of inversion of these thiospinels has also been determined. The three thiospinels undergo a phase transition toward a defect LiTiO2-type structure above 9.5, 8.3, and 6.8 GPa in CdIn2S4, MgIn2S4, and MnIn2S4, respectively. Interestingly, the low- and high-pressure phases belong to the same symmetry group (Fd-3m), the tr…
An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures
[EN] We report the formation of an ultrahigh CO2-loaded pure-SiO2, silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO, medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO, molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to th…
High-pressure transition to the post-barite phase in BaCrO4hashemite
A recent high-pressure study on barium chromate BaCrO${}_{4}$ reported a phase transition but the structure of the high-pressure phase structure could not be identified. This high-pressure phase was suggested to have a monoclinic structure different from other high-pressure forms of $AB$O${}_{4}$-type compounds. In this work, we have carried out x-ray diffraction measurements up to 46 GPa using He as the quasihydrostatic pressure medium and density-functional theory calculations. Our studies allow us to identify the high-pressure phase as the $P$2${}_{1}$2${}_{1}$2${}_{1}$ post-barite-type phase, recently reported for BaSO${}_{4}$. The equations of state of both, the low- and the high-press…
Experimental and Theoretical Study of Bi2O2Se Under Compression
[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…
InBO3 and ScBO3 at high pressures: an ab initio study of elastic and thermodynamic properties
We have theoretically investigated the elastic properties of calcite-type orthoborates ABO(3) (A= Sc and In) at high pressure by means of ab initio total-energy calculations. From the elastic stiffness coefficients, we have obtained the elastic moduli (B, G and E), Poisson's ratio (nu), B/G ratio, universal elastic anisotropy index (A(U)), Vickers hardness, and sound wave velocities for both orthoborates. Our simulations show that both borates are more resistive to volume compression than to shear deformation (B > G). Both compounds are ductile and become more ductile, with an increasing elastic anisotropy, as pressure increases. We have also calculated some thermodynamic properties, like D…
High-pressure structural and elastic properties of Tl2O3
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we h…
Structural and vibrational study of Bi2Se3under high pressure
The structural and vibrational properties of bismuth selenide (Bi${}_{2}$Se${}_{3}$) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been complemented with ab initio total-energy and lattice dynamics calculations. Our experimental results evidence a phase transition from the low-pressure rhombohedral ($R$-3$m$) phase (\ensuremath{\alpha}-Bi${}_{2}$Se${}_{3}$) with sixfold coordination for Bi to a monoclinic $C$2/$m$ structure (\ensuremath{\beta}-Bi${}_{2}$Se${}_{3}$) with sevenfold coordination for Bi above 10 GPa. The equation of state and the pressure dependence of the lattice parameters and volume …
High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3
Bi2Se3, Bi2Te3, and Sb2Te3 are narrow bandgap semiconductors with tetradymite crystal structure (R-3m) which have been extensively studied along with their alloys due to their promising operation as thermoelectric materials in the temperature range between 300 and 500¿K. Studies on these layered semiconductors have increased tremendously in the last years since they have been recently predicted and demonstrated to behave as 3D topological insulators. In particular, a number of high-pressure studies have been done in the recent years in these materials. In this work we summarize the main results of the high-pressure studies performed in this family of semiconductors to date. In particular, w…
Structural Behavior of Natural Silicate–Carbonate Spurrite Mineral, Ca5(SiO4)2(CO3), under High-Pressure, High-Temperature Conditions
We report on high-pressure and high-temperature angle-dispersive synchrotron X-ray diffraction and high-pressure Raman data up to 27 GPa and 700 K for natural silicate carbonate Ca5(SiO4)2(CO3) spurrite mineral. No phase transition was found in the studied P–T range. The room-temperature bulk modulus of spurrite using Ne as the pressure-transmitting medium is B0 = 77(1) GPa with a first-pressure derivative of B0′ = 5.9(2). The structure compression is highly anisotropic, the b axis being approximately 30% more compressible than the a and c axes. The volumetric thermal expansivity value around 8 GPa was estimated to be 4.1(3) × 10–5 K–1. A comparison with intimately related minerals CaCO3 ca…
Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates
We have carried out a systematic study of abiotic precipitation at different temperatures of several Mg and Ca carbonates (calcite, nesquehonite, hydrocalcite) present in carbonaceous chondrites. This study highlights the capability of Raman spectroscopy as a primary tool for performing full mineralogical analysis. The precipitation reaction and the structure of the resulting carbonates were monitored and identified with Raman spectroscopy. Raman spectroscopy enabled us to confirm that the precipitation reaction is very fast (minutes) when Ca(II) is present in the solution, whereas for Mg(II) such reactions developed at rather slow rates (weeks). We also observed that both the composition a…
Dense Post-Barite-type Polymorph of PbSO4 Anglesite at High Pressures
Synchrotron X-ray diffraction measurements on lead sulfate have been performed up to 67 GPa using He as pressure transmitting medium. Experiments reveal the existence of a reversible pressure-induced phase transition from the initial Pnma barite-type to the P212121 post-barite-type structure at pressures above 27 GPa. This phase transition involves a volume collapse of 2.4% and requires a considerable pressure overshoot (large pressure range with coexistence of phases) to overcome the large kinetic barrier of the transition. DFT calculations confirm the experimental observations and support the hypothesis that post-barite-type phase is the thermodynamically stable high-pressure structure fo…
Compressibility and phase stability of iron-rich ankerite
ABSTRACT: The structure of the naturally occurring, iron-rich mineral Ca₁․₀₈(₆)Mg₀.₂₄(₂)Fe₀.₆₄(₄)Mn₀.₆₄(₄)(CO₃)₂ ankerite was studied in a joint experimental and computational study. Synchrotron X-ray powder diffraction measurements up to 20 GPa were complemented by density functional theory calculations. The rhombohedral ankerite structure is stable under compression up to 12 GPa. A third-order Birch-Murnaghan equation of state yields V₀ = 328.2(3) ų, bulk modulus B₀ = 89(4) GPa, and its first-pressure derivative B'₀ = 5.3(8)-values which are in good agreement with those obtained in our calculations for an ideal CaFe(CO₃)₂ ankerite composition. At 12 GPa, the iron-rich ankerite structure …
Comparative study of the high-pressure behavior of ZnV2O6, Zn2V2O7, and Zn3V2O8
We report a study of the high-pressure structural behavior of ZnV2O6, Zn2V2O2, and Zn3V2O8, which has been explored by means of synchrotron powder x-ray diffraction. We found that ZnV2O6 and Zn3V2O8 remain in the ambient-pressure structure up to 15 GPa. In contrast, in the same pressure range, Zn2V2O2 undergoes three phase transitions at 0.7, 3.0, and 10.8 GPa, respectively. Possible crystal structures for the first and second high-pressure phases are proposed. Reasons for the distinctive behavior of Zn2V2O2 are discussed. The compressibility of the different polymorphs has been determined. The response to pressure is found to be anisotropic in all the considered compounds and the room-temp…
Experimental evidence for pressure-driven isostructural and symmetry-breaking phase transitions on Bi14CrO24
Abstract We performed in situ X-ray diffraction experiments on Bi 14 CrO 24 under pressure up to 17.4 GPa. We discovered two reversible phase transitions that take place at 7.3 and 12.1 GPa. The first transition is isostructural and the second-transition involves a tetragonal-monoclinic symmetry reduction. Both transitions involve a small volume collapse indicating that they have a first-order character. For the three observed phases we determined a P – V equation of state. All of them are highly compressible having bulk moduli that range from 64 to 70 GPa. We also determined the axial compressibilities for difference phases, being the response of the structures to pressure anisotropic. Thi…
High-pressure x-ray diffraction study of CdMoO4 and EuMoO4
International audience; We studied the effects of high pressure on the crystalline structure of scheelite-type CdMoO4 and EuMoO4. We found that the compressibility of the materials is highly nonisotropic, with the c-axis being the most compressible one. We also observed clear evidence of a structural phase transition at 12 GPa (CdMoO4) and 8.8 GPa (EuMoO4). The high-pressure phase has a monoclinic structure similar to M-fergusonite. The transition is reversible, and no volume change is detected between the low- and high-pressure phases. The results contradict early x-ray diffraction studies carried out in CdMoO4 and are compared with those obtained previously in isomorphic molybdates. Final…
High-pressure theoretical and experimental study of HgWO4
HgWO 4 at ambient pressure is characterized using a combination of ab initio calculations, X-ray diffraction and Raman scattering measurements. The effect of low pressure and temperature on the structural stability is analysed. Extending our ab initio study to the range of higher pressures, a sequence of stable phases up to 30GPa is proposed. © 2011 Taylor & Francis.
Pressure-induced amorphization of YVO4:Eu3+ nanoboxes
A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two …
Phase Stability of Natural Ni0.75Mg0.22Ca0.03CO3 Gaspeite Mineral at High Pressure and Temperature
[EN] Divalent metal carbonates play an important role in Earth's carbon cycle, but the effect of chemical substitution is still poorly known. In this work, we have studied the structural and vibrational properties of natural mineral gaspeite (Ni0.75Mg0.22Ca0.03CO3) under high pressure and temperature using in situ synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. These experiments have been complemented by ab initio simulations. Synchrotron high-pressure XRD measurements at room temperature using He as the pressure transmitting medium have shown that the calcite-type structure is stable up to 23.3 GPa. A bulk modulus at zero pressure of B-0 = 105(2) GPa with B-0' …
Crystal structure of sinhalite MgAlBO4 under high pressure
We report on high-pressure angle-dispersive X-ray diffraction data up to 27 GPa for natural MgAlBO4 sinhalite mineral and ab initio total energy calculations. The experimental bulk modulus of sinhalite is B-0 = 171(3) GPa with a first-pressure derivative of B-0' = 4.2(3). A comparison with other olivine-type compounds shows that the value for B0 is 27% larger than that of Mg2SiO4 forsterite and 29% smaller than that of Al2BeO4 chrysoberyl. These differences are interpreted, on the basis of our ab initio calculations, in terms of the relative incompressibility of Al-O bonds in AlO6 octahedra (with a calculated bulk modulus of 250(1) GPa) as compared to Mg-O bonds in MgO6 octahedra (with a ca…
Compression of Silver Sulfide: X-ray Diffraction Measurements and Total-Energy Calculations
[EN] Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag2S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl2-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag2Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a …
Polymorphism in Strontium Tungstate SrWO 4 under Quasi-Hydrostatic Compression
The structural and vibrational properties of SrWO4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO4 tetragonal scheelite-type structure (S.G. I41/a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possi…
Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3
[EN] The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite-type cerium scandate were studied in situ under high pressure by means of synchrotron X-ray powder diffraction, using a diamond-anvil cell. We found that the perovskite-type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure indicated an anisotropic compression. The room-temperature pressure¿volume equation of state (EOS) obtained from the experiments indicated the EOS parameters V0 = 262.5(3) Å3 , B0 = 165(7) GPa, and B0¿ = 6.3(5). From the evolution of microscopic structural parameters like bond distan…
X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
In this paper, we report angle-dispersive X-ray diffraction data of molybdenum melting, measured in a double-sided laser-heated diamond-anvil cell up to a pressure of 119 GPa and temperatures up to 3400 K. The new melting temperatures are in excellent agreement with earlier measurements up to 90 GPa that relied on optical observations of melting and in strong contrast to most theoretical estimates. The X-ray measurements show that the solid melts from the bcc structure throughout the reported pressure range and provide no evidence for a high temperature transition from bcc to a close-packed structure, or to any other crystalline structure. This observation contradicts earlier interpretation…
Peptide metal-organic frameworks under pressure: flexible linkers for cooperative compression
We investigate the structural response of a dense peptide metal-organic framework using in situ powder and single-crystal X-ray diffraction under high-pressures. Crystals of Zn(GlyTyr)2 show a reversible compression by 13% in volume at 4 GPa that is facilitated by the ability of the peptidic linker to act as a flexible string for a cooperative response of the structure to strain. This structural transformation is controlled by changes to the conformation of the peptide, which enables a bond rearrangement in the coordination sphere of the metal and changes to the strength and directionality of the supramolecular interactions specific to the side chain groups in the dipeptide sequence. Compar…
Tuning the propagation constant by the anti-crossing bandgap prism coupling technique.
A novel plasmonic structure based on an anticrossing bandgap prism coupling technique is proposed. The study has been carried out using photonic crystals based on diffraction gratings (bounded by dielectrics with identical dielectric functions) together with a high refractive index prism to couple the long-range surface plasmon polaritons to photons. We analyse the structure and demonstrate the ability for tuning the propagation constants of plasmon modes by changing the thickness of the gold grating. The comparison to non-bandgap techniques is studied, and the influence of the plasmonic configuration on the plasmon propagation constant is discussed as well. Experimental measurements were a…
Experimental and Theoretical Study of SbPO 4 under Compression
SbPO4 is a complex monoclinic layered material characterized by a strong activity of the non-bonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a-axis and linked by weak Sb-O electrostatic interactions. In fact, Sb is 4-fold coordination with O similar to what occurs with the P-O coordination, despite the large difference of ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of …
Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach
The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transit…
Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd 2Mo 3N, Ni 2Mo 3C 0.52N 0.48, Co 3Mo 3C 0.62N 0.38, and Fe 3Mo 3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, the least compressible material being Fe 3Mo 3C, B 0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content is increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials. © 2012 American Physic…
Structural phase transitions on AgCuS stromeyerite mineral under compression.
The structural behavior of mineral Stromeyerite, AgCuS, has been studied by means of angle-dispersive X-ray diffraction measurements up to 13 GPa and ab initio total-energy calculations. Two high-pressure phase transitions are found at 1.4 and 5.7 GPa, from the initial distorted Ni(2)In-type phase (AuRbS-type, RP, space group Cmc2(1)) through an anti-PbClF-type phase (HP1, space group P4/nmm) to a monoclinic distortion of this latter phase (HP2, space group P2(1)/m). The collapse of the metal-metal interatomic distances at the RP-HP1 transition suggests a stronger metallic behavior of the high-pressure phase. The compressibility of the lattice parameters and the equation of state of the fir…
Pressure and Temperature Effects on Low-Density Mg3Ca(CO3)4 Huntite Carbonate
Pressure (P)–volume (V)–temperature (T) relations of huntite [Mg3Ca(CO3)4] have been determined in situ up to 5 GPa and 500 °C using a resistive-heated diamond-anvil cell and synchrotron X-ray diff...
Structural evolution of CO2 filled pure silica LTA zeolite under high-pressure high-temperature conditions
[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments…
Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature.
Correspondence: Strongly-driven Re+CO 2 redox reaction at high-pressure and high-temperature
Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions
Abstract High-pressure room-temperature angle-dispersive powder X-ray diffraction measurements on Cu2S chalcocite were performed up to 30 GPa using a diamond-anvil cell, He as pressure transmitting medium and synchrotron radiation. Two first-order phase transitions were found at 3.2 and 7.4 GPa. The indexation of the powder diffraction patterns suggests three different monoclinic cells for the low-pressure chalcocite and the two high-pressure phases. Subtle changes in the X-ray diffraction patterns suggest a third pressure-induced transition above 26 GPa. Structural parameters and compressibility are discussed and compared to those reported in a previous study on Cu2S nanowires.
Theoretical and experimental study of the structural stability ofTbPO4at high pressures
We have performed a theoretical and experimental study of the structural stability of terbium phosphate at high pressures. Theoretical ab initio total-energy and lattice-dynamics calculations together with x-ray diffraction experiments have allowed us to completely characterize a phase transition at {approx}9.8 GPa from the zircon to the monazite structure. Furthermore, total-energy calculations have been performed to check the relative stability of 17 candidate structures at different pressures and allow us to propose the zircon {yields} monazite {yields} scheelite {yields} SrUO{sub 4}-type sequence of stable structures with increasing pressure. In this sequence, sixfold P coordination is …
Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He
Compression of arsenolite has been studied from a joint experimental and theoretical point of view. Experiments on this molecular solid at high pressures with different pressure-transmitting media have been interpreted thanks to state-of-the-art ab initio calculations. Our results confirm arsenolite as one of the most compressible minerals and provide evidence for ordered helium trapping above 3 GPa between adamantane-type $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}$ cages. Our calculations indicate that, at relatively small pressures, helium establishes rather localized structural bonds with arsenic forming a compound with stoichiometry $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}\ifmmode\c…
New high-pressure phase of HfTiO4 and ZrTiO4 ceramics
We studied the high-pressure effects on the crystalline structure of monoclinic HfTiO4 and ZrTiO4. We found that the compressibility of these ceramics is highly non-isotropic, being the b-axis the most compressible one. In addition, the a-axis is found to have a small and negative compressibility. At 2.7 GPa (10.7 GPa) we discovered the onset of an structural phase transition in HfTiO4 (ZrTiO4), coexisting the low- and high-pressure phases in a broad pressure range. The new high-pressure phase has a monoclinic structure which involves an increase in the Ti-O coordination and a collapse of the cell volume. The equation of state for the low-pressure phase is also determined.
Compressibility Systematics of Calcite-Type Borates: An Experimental and Theoretical Structural Study on ABO(3) (A = Al, Sc, Fe, and In)
The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibi…
Crystal structure of HgGa2Se4 under compression
We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa2Se4). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa2Se4 exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.
High-Pressure High-Temperature Stability and Thermal Equation of State of Zircon-Type Erbium Vanadate.
Inorganic chemistry 57(21), 14005 - 14012 (2018). doi:10.1021/acs.inorgchem.8b01808
Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7 at High Pressure and Delineation of a High-Pressure Monoclinic Phase.
We report a combined experimental and theoretical study of melilite-type germanate, Sr2ZnGe2O7, under compression. In situ high-pressure X-ray diffraction and Raman scattering measurements up to 22 GPa were complemented with first-principles theoretical calculations of structural and lattice dynamics properties. Our experiments show that the tetragonal structure of Sr2ZnGe2O7 at ambient conditions transforms reversibly to a monoclinic phase above 12.2 Gpa with similar to 1% volume drop at the phase transition pressure. Density functional calculations indicate the transition pressure at, similar to 13 GPa, which agrees well with the experimental value. The structure of the high-pressure mono…
High-pressure phase transformations in NdVO4 under hydrostatic, conditions: a structural powder x-ray diffraction study
Room temperature angle dispersive powder x-ray diffraction experiments on zircon-type NdVO4 were performed for the first time under quasi-hydrostatic conditions up to 24.5 GPa. The sample undergoes two phase transitions at 6.4 and 19.9 GPa. Our results show that the first transition is a zircon-to-scheelite-type phase transition, which has not been reported before, and contradicts previous non-hydrostatic experiments. In the second transition, NdVO4 transforms into a fergusonite-type structure, which is a monoclinic distortion of scheelite-type. The compressibility and axial anisotropy of the different polymorphs of NdVO4 are reported. A direct comparison of our results with former experime…
Transition path to a dense efficient-packed post-delafossite phase. Crystal structure and evolution of the chemical bonding
We are thankful for the financial support received from the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación under national projects PGC2018-094417-B-I00 (co-financed by EU FEDER funds), MAT2016-75586-C4-1-P/2-P, FIS2017-83295-P, PID2019-106383GB-C41/C42 and RED2018- 102612-T (MALTA Consolider), and from Generalitat Valenciana under project PROMETEO/2018/123. D.S-P, A.O.R, and J.A.S acknowledge financial support of the Spanish MINECO for the RyC-2014-15643, RyC-2016-20301, and RyC-2015-17482 Ramón y Cajal Grants, respectively.
Front Cover: High-pressure studies of topological insulators Bi2 Se3 , Bi2 Te3 , and Sb2 Te3 (Phys. Status Solidi B 4/2013)
Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4
We have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of PbCrO 4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. X-ray-diffraction, Raman, and optical absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is from a monoclinic structure to another monoclinic structure. It maintains the symmetry of the crystal but has important consequences in the physical properties; among others, a band-gap collapse is induced. The second one invo…
ChemInform Abstract: Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7at High Pressure and Delineation of a High-Pressure Monoclinic Phase.
The title compound is characterized by high-pressure powder XRD and Raman scattering measurements up to 22 GPa, and by DFT calculations.
Polymorphism of praseodymium orthovanadate under high pressure
Zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ has been studied at high pressures and room temperature by means of synchrotron powder x-ray diffraction. At room temperature, we observed the previously known zircon-to-monazite phase transition at 5.5(4) GPa and a second phase transition from monazite to a monoclinic structure at 12.7(8) GPa, which we identified as a $\mathrm{PbW}{\mathrm{O}}_{4}$-III-type phase. This conclusion is supported by our ab initio calculations, which also predict a scheelite-type phase to be stable at high pressure. Motivated by this finding, we subjected zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ samples to high pressure (7 GPa) and temperature (600, 800, and 1000 \if…
High-pressure polymorphs of gadolinium orthovanadate: X-ray diffraction, Raman spectroscopy, and ab initio calculations
We present a study of the different high-pressure polymorphs of $\mathrm{GdV}{\mathrm{O}}_{4}$ and its stability. Powder x-ray diffraction and Raman experiments show a phase transition from a zircon- to a scheelite-type structure taking place at 6.8(4) GPa. Ab initio density functional theory calculations support this conclusion. The equations of state of these two phases are reported. In addition, we studied the pressure evolution of the Raman modes for the zircon and scheelite phases, showing good agreement between calculations and experiments. For the sake of completeness, we performed optical-absorption measurements up to 16 GPa, showing a band-gap collapse at the transition point. Beyo…
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se…
Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions
Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray-diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the body-centered cubic-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations a…
Post-tilleyite, a dense calcium silicate-carbonate phase
Scientific reports 9(1), 7898 (2019). doi:10.1038/s41598-019-44326-9
Isothermal equation of state and phase stability of Fe 5 Si 3 up to 96 GPa and 3000 K
The composition of Earth's core has first-order implications for understanding the thermal and chemical history of the deep Earth. The present work measures the pressure-volume equation of state of Fe5Si3 to 96 GPa in a diamond anvil cell using noble gas pressure media and demonstrates that Fe5Si3 is not stable at high temperature and pressure, but reappears during thermal quench. The isothermal equation of state at ambient temperature of Fe5Si3 is given by the bulk modulus KT,0 = 167 (8) and KT,0' = 5.1 (2)), with V0 = 56.29 cm3mol-1. At high temperatures and pressures we observed the disappearance of hexagonal Fe5Si3 diffraction peaks and the appearance of peaks corresponding to cubic FeS…
Lattice dynamics of zircon-type NdVO4 and scheelite-type PrVO4 under high-pressure
Abstract Zircon-type NdVO4 and scheelite-type PrVO4 have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported by ab initio calculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase …
Zircon to monazite phase transition in CeVO4: X-ray diffraction and Raman-scattering measurements
X-ray diffraction and Raman-scattering measurements on cerium vanadate have been performed up to 12 and 16 GPa, respectively. Experiments reveal at 5.3 GPa the onset of a pressure-induced irreversible phase transition from the zircon to the monazite structure. Beyond this pressure, diffraction peaks and Raman-active modes of the monazite phase are measured. The zircon-to-monazite transition in CeVO4 is distinctive among the other rare-earth orthovanadates. We also observed softening of external translational T(Eg )a nd internalν2(B2g) bending modes. We attribute it to mechanical instabilities of zircon phase against the pressure-induced distortion. We additionally report lattice-dynamical a…
High-pressure structural phase transition inMnWO4
The pressure-induced phase transition of the multiferroic manganese tungstate MnWO4 is studied on single crystals using synchrotron x-ray diffraction and Raman spectroscopy. We observe the monoclinic P2/c to triclinic P (1) over bar phase transition at 20.1 GPa and get insight on the phase transition mechanism from the appearance of tilted triclinic domains. Selective Raman spectroscopy experiments with single crystals have shown that the onset of the phase transition occurs 5 GPa below the previously reported pressure obtained from experiments performed with powder samples.
Crystal behavior of potassium bromate under compression.
We report on high-pressure angle-dispersive X-ray diffraction data up to 15 GPa andab initiototal-energy calculations up to 242 GPa for KBrO3. No phase transition was found below 15 Pa in contrast to previously reported data. Its experimental bulk modulus in the quasi-hydrostatic regime isB0= 18.8 (9) GPa with a bulk modulus pressure derivativeB′0= 8.2 (4). However, according to ourab initiocalculations, KBrO3significantly reduces its rhombohedral distortionviasmall cooperative movements of the atoms and the structure progressively approaches the cubic symmetry, where the KBr subarray would adopt a topology similar to that of the corresponding B2-type bromide. This rearrangement of atoms is…
CCDC 1588161: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CSD 1852498: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CCDC 1588164: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CCDC 1588162: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CCDC 1588165: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CSD 1852499: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CSD 1852497: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CSD 1852496: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CSD 1852501: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CSD 1852500: Experimental Crystal Structure Determination
Related Article: Javier Ruiz-Fuertes, Domingo Martínez-García, Tomás Marqueño, Daniel Errandonea, Simon G. MacLeod, Thomas Bernert, Eiken Haussühl, David Santamaría-Pérez, Jordi Ibáñez, Anitha Mallavarapu, S. Nagabhusan Achary, Catalin Popescu, and Marco Bettinelli|2018|Inorg.Chem.|57|14005|doi:10.1021/acs.inorgchem.8b01808
CCDC 1588166: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CCDC 1588163: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D
CCDC 1588160: Experimental Crystal Structure Determination
Related Article: José Navarro-Sánchez, Ismael Mullor-Ruíz, Catalin Popescu, David Santamaría-Pérez, Alfredo Segura, Daniel Errandonea, Javier González-Platas, Carlos Martí-Gastaldo|2018|Dalton Trans.|47|10654|doi:10.1039/C8DT01765D