6533b852fe1ef96bd12aad79
RESEARCH PRODUCT
Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides
Oscar GomisA. GómezDavid Santamaría-pérezJavier Ruiz-fuertesDaniel ErrandoneaJuan Angel SansFernando Sapiñasubject
Materials scienceHigh-pressureAnalytical chemistryUltra-incompressibleFOS: Physical scienceschemistry.chemical_elementNitrideengineering.materialCarbideNitridesStructural stabilityPhysics - Chemical PhysicsBimetallic stripChemical Physics (physics.chem-ph)MolybdenumCondensed Matter - Materials ScienceCompoundsMaterials Science (cond-mat.mtrl-sci)DiamondCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBeamlinechemistryMolybdenumFISICA APLICADAX-ray crystallographyCompressibilityengineeringCarbidesPd2Mo3Ndescription
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd 2Mo 3N, Ni 2Mo 3C 0.52N 0.48, Co 3Mo 3C 0.62N 0.38, and Fe 3Mo 3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, the least compressible material being Fe 3Mo 3C, B 0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content is increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials. © 2012 American Physical Society.
year | journal | country | edition | language |
---|---|---|---|---|
2012-04-06 |