0000000000012658

AUTHOR

Juan Angel Sans

showing 52 related works from this author

Study of the bandgap renormalization in Ga-doped ZnO films by means of optical absorption under high pressure and photoelectron spectroscopy

2008

Abstract In this paper we investigate the band gap renormalization in heavily Ga-doped ZnO thin films deposited by pulsed laser deposition on C -plane sapphire and mica substrates. Thin films were studied by ultraviolet photoelectron spectroscopy and also by optical measurements under high pressure. The Fermi-level shift, as obtained from ultraviolet photoelectron experiments, exhibits a relatively small and positive shift (about 0.3 eV) with respect to the valence band for increasing electron concentrations up to 1021 cm−3. The optical gap exhibits a much larger increase (0.6 eV) for the same concentration range. Absorption measurements under pressure show that the pressure coefficient of …

Materials scienceBand gapbusiness.industryDopingCondensed Matter PhysicsMolecular physicsPulsed laser depositionOpticsX-ray photoelectron spectroscopySapphireGeneral Materials ScienceElectrical and Electronic EngineeringThin filmbusinessAbsorption (electromagnetic radiation)Ultraviolet photoelectron spectroscopySuperlattices and Microstructures
researchProduct

Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure

2014

In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa2S4) at high pressures. This compound belongs to the family of AB(2)X(4) ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa2S4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pres…

DiffractionSulfideHigh-pressureAb initioThermodynamicsMechanical propertiesTetragonal crystal systemMaterials ChemistryElastic moduluschemistry.chemical_classificationEquation of stateChalcopyriteMechanical EngineeringMetals and AlloysElasticityX-ray diffractionCrystallographychemistrySemiconductorsMechanics of Materialsvisual_artFISICA APLICADAX-ray crystallographyCompressibilityvisual_art.visual_art_medium
researchProduct

Structural and vibrational behavior of cubic Cu1.80(3)Se cuprous selenide, berzelianite, under compression

2020

[EN] We have performed an experimental study of the crystal structure and lattice dynamics of cubic Cu1.80(3)Se at ambient temperature and high pressures. Two reversible phase transitions were found at 2.9 and 8.7 GPa. The indexation of the angle-dispersive synchrotron x-ray diffraction patterns suggests a large orthorhombic cell and a monoclinic cell for the high-pressure phases. Raman measurements provide additional information on the local structure. The compressibility of the three ambient temperature phases has been determined and compared to that of other sulphides and selenides.

DiffractionPhase transitionMaterials scienceHigh-pressureBerzelianiteAnalytical chemistry02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundsymbols.namesakelawSelenideMaterials ChemistryCompressibilityMechanical EngineeringCrystal structureMetals and Alloys021001 nanoscience & nanotechnologySynchrotron0104 chemical scienceschemistryMechanics of MaterialsPhase transitionsFISICA APLICADAsymbolsOrthorhombic crystal system0210 nano-technologyRaman spectroscopyMonoclinic crystal systemCopper selenide
researchProduct

Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties

2013

We have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a ax…

Potassium chromatePhase transitionCrystal structureSilver chromateAntifluoriteCondensed Matter::Materials Sciencesymbols.namesakechemistry.chemical_compoundX-Ray DiffractionCondensed Matter::SuperconductivityPhase (matter)Physical and Theoretical ChemistryIsostructuralTotal-Energy calculationsHigh-pressuresRamanCondensed matter physicsChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral EnergyCrystal-structureAugmented-wave methodFISICA APLICADAX-ray crystallographySilver cromateTransitionsymbolsCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal systemRaman spectroscopy
researchProduct

Investigation of lattice dynamical and dielectric properties of MgO under high pressure by means of mid- and far-infrared spectroscopy.

2013

We investigate the lattice dynamical and dielectric properties of MgO single crystals and powders by measurements in the mid- and far-infrared frequency region under high pressures, ranging up to 21.7 GPa. The shift of the restrahlen region is used to determine the pressure dependence of the transverse and longitudinal optical modes. The analysis of the refractive index in the mid- and far-infrared region allowed us to obtain the pressure behavior of the static and electronic dielectric constants. The transverse effective charge slowly decreases under high pressure, reflecting the stability of MgO. As a consequence, the pressure dependence of the static and electronic dielectric constants i…

Condensed matter physicsSpectrophotometry InfraredChemistrybusiness.industryPhononDielectricCondensed Matter PhysicsEffective nuclear chargelaw.inventionCondensed Matter::Materials ScienceTransverse planeOpticslawLattice (order)Spectroscopy Fourier Transform InfraredElectric ImpedancePressureGeneral Materials ScienceCrystallizationbusinessSpectroscopyCrystallizationMagnesium OxideRefractive indexJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Structural and Vibrational Properties of Corundum-type In2O3 Nanocrystals under Compression

2017

[EN] This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12 14 GPa. The different stability range found in nanocrystallin…

Materials scienceCorundum nanocrystalsThermodynamicsBioengineeringCorundumNanotechnology02 engineering and technologyengineering.material010402 general chemistryEspectroscopia01 natural sciencesIndium oxidesymbols.namesakePhase (matter)NanocristalesGeneral Materials ScienceElectrical and Electronic EngineeringhighpressureMechanical EngineeringDifracción de rayos XGeneral Chemistry021001 nanoscience & nanotechnologyNanocrystalline material0104 chemical sciencesX-ray diffractionNanocrystalMechanics of MaterialsFISICA APLICADAX-ray crystallographyRaman spectroscopysymbolsengineeringOrthorhombic crystal systemAb initio calculations0210 nano-technologyRaman spectroscopyRaman scatteringAlta presión
researchProduct

Tetrahedral versus octahedral Mn site coordination in wurtzite and rocksalt Zn1−xMnxO investigated by means of XAS experiments under high pressure

2007

Abstract We present the results of x-ray absorption measurements carried out in Zn 1− x Mn x O thin films under high pressure. The Mn environment remains essentially the same for nominal Mn concentrations given by x = 0.05 , 0.1, 0.15 and 0.25. Both the XANES (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray Absorption Fine Structure) indicate that Mn occupies the Zn site, being surrounded by four oxygen atoms at 2.02±0.01 A. The substitutional hypothesis is reinforced by comparing the differences between the ambient (wurtzite) and high pressure (rocksalt) spectra, which correspond to tetrahedral and octahedral Mn environments.

010302 applied physicsX-ray absorption spectroscopyMaterials scienceExtended X-ray absorption fine structure02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesXANESSpectral lineX-ray absorption fine structureCrystallographyOctahedron0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringAbsorption (chemistry)0210 nano-technologyWurtzite crystal structureSuperlattices and Microstructures
researchProduct

Compressibility and Structural Stability of Nanocrystalline TiO2 Anatase Synthesized from Freeze-Dried Precursors

2014

The high-pressure structural behavior of 30 nm nanoparticles of anatase TiO2 was studied under hydrostatic and quasi-hydrostatic conditions up to 25 GPa. We found that the structural sequence is not sensitive to the use of different pressure transmitting media. Anatase-type nanoparticles exhibit a phase transition beyond 12 GPa toward a baddeleyite-type structure. Under decompression this phase transition is irreversible, and a metastable columbite-type structure is recovered at ambient conditions. The bulk modulus of anatase-type nanoparticles was determined confirming that nanoparticles of TiO2 are more compressible than bulk TiO2. Similar conclusions were obtained after the determination…

Inorganic ChemistryPhase transitionBulk modulusAnataseMolecular geometryChemical engineeringChemistryMetastabilityCompressibilityMineralogyNanoparticlePhysical and Theoretical ChemistryNanocrystalline materialInorganic Chemistry
researchProduct

Optical, X-ray absorption and photoelectron spectroscopy investigation of the Co site configuration in Zn1−xCoxO films prepared by pulsed laser depos…

2007

Abstract In this paper, we investigate the Co site configuration in Zn1−xCoxO thin films by means of different spectroscopic techniques. Thin films were prepared by pulsed laser deposition with Co proportion from 1% to 30%. The Co 2p doublet observed in the X-ray photoelectron spectra exhibits the spin–orbit splitting and shake-up satellites typical of Co+2 ionization states. X-ray absorption spectra at the Co K-edge, taken in fluorescence mode, unambiguously show that Co atoms are in tetrahedral configuration substituting for Zn over the whole composition range. Optical absorption spectra provide further evidence of the tetrahedral coordination of Co cations, both through the internal tran…

Materials scienceExtended X-ray absorption fine structureAbsorption spectroscopyAnalytical chemistryCondensed Matter PhysicsXANESPulsed laser depositionAbsorption edgeX-ray photoelectron spectroscopyGeneral Materials ScienceElectrical and Electronic EngineeringAtomic physicsThin filmAbsorption (electromagnetic radiation)Superlattices and Microstructures
researchProduct

Experimental and Theoretical Study of Bi2O2Se Under Compression

2018

[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…

Phase transitionEquation of stateMaterials scienceequations of stateBand gap02 engineering and technology01 natural sciencesTetragonal crystal systemCondensed Matter::Materials ScienceAb initio quantum chemistry methodsbismuth compounds0103 physical sciencescalculationsPhysical and Theoretical Chemistry010306 general physicsCondensed matter physicsbusiness.industrystability021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergySemiconductorStructural stabilityFISICA APLICADAHardening (metallurgy)electronic properties0210 nano-technologybusiness
researchProduct

InBO3 and ScBO3 at high pressures: an ab initio study of elastic and thermodynamic properties

2016

We have theoretically investigated the elastic properties of calcite-type orthoborates ABO(3) (A= Sc and In) at high pressure by means of ab initio total-energy calculations. From the elastic stiffness coefficients, we have obtained the elastic moduli (B, G and E), Poisson's ratio (nu), B/G ratio, universal elastic anisotropy index (A(U)), Vickers hardness, and sound wave velocities for both orthoborates. Our simulations show that both borates are more resistive to volume compression than to shear deformation (B > G). Both compounds are ductile and become more ductile, with an increasing elastic anisotropy, as pressure increases. We have also calculated some thermodynamic properties, like D…

Ab initioMechanical properties02 engineering and technology01 natural scienceslaw.inventionsymbols.namesakeThermal conductivityAb initio quantum chemistry methodslaw0103 physical sciencesmedicineGeneral Materials Science010306 general physicsElastic modulusDebye modelPhysicsCondensed matter physicsStiffnessOxidesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsHigh pressureSemiconductorsFISICA APLICADAVickers hardness testsymbolsAb initio calculationsHydrostatic equilibriummedicine.symptom0210 nano-technology
researchProduct

High-pressure structural and elastic properties of Tl2O3

2014

The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we h…

Equation of statePhase transitionMaterials scienceAb initioOxideGeneral Physics and AstronomyThermodynamicsFOS: Physical sciencesInitio molecular-dynamicsHigh-temperatureInduced amorphizationchemistry.chemical_compoundX-Ray DiffractionTotal-Energy calculationsCondensed Matter - Materials ScienceSingle crystalMaterials Science (cond-mat.mtrl-sci)Compression (physics)Crystal thallic oxideAmorphous solidchemistryAugmented-wave methodFISICA APLICADAElectrical-conductionOrthorhombic crystal systemPhase-transformationPowder diffraction
researchProduct

Pressure dependence of the optical properties of wurtzite and rock-salt Zn1–xCoxO thin films

2007

In this paper we investigate the electronic structure of Zn 1-x Co x O by means of optical absorption measurements under pressure. Thin films of Zn 1-x Co x O with different Co content (from 1 to 30%) were prepared by pulsed laser deposition on mica substrates. Absorption spectra exhibit three main features that are clearly correlated to the Co content in the films: (i) absorption peaks in the infrared associated to crystal-field-split internal transitions in the Co 3d shell, with very small pressure coefficients due to their atomic character; (ii) a broad absorption band below the fundamental edge associated to charge transfer transitions, that exhibit relatively large pressure coefficient…

Absorption edgeAbsorption spectroscopyChemistryAbsorption bandPhase (matter)Analytical chemistryThin filmCondensed Matter PhysicsAbsorption (electromagnetic radiation)Electronic Optical and Magnetic MaterialsWurtzite crystal structurePulsed laser depositionphysica status solidi (b)
researchProduct

Direct observation of elemental segregation in InGaN nanowires by X-ray nanoprobe

2011

Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano-X-ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin- gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibi…

010302 applied physicsX-ray nanoprobePhotoluminescenceChemistryAnalytical chemistryNanowireNanoprobe02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencessymbols.namesake0103 physical sciencessymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyRaman scatteringMolecular beam epitaxyphysica status solidi (RRL) - Rapid Research Letters
researchProduct

GdBO3 and YBO3 crystals under compression

2021

High-pressure X-ray diffraction studies on nanocrystals of the GdBO3 and YBO3 rare-earth orthoborates are herein reported up to 17.4(2) and 13.4(2) GPa respectively. The subsequent determination of the room-temperature pressure-volume equations of state is presented and discussed in the context of contemporary publications which contradict the findings of this work. In particular, the isothermal bulk moduli of GdBO3 and YBO3 are found to be 170(13) and 163(13) GPa respectively, almost 50% smaller than recent findings. Our experimental results provide an accurate revision of the high-pressure compressibility behaviour of GdBO3 and YBO3 which is consistent with the known systematics in isomor…

DiffractionMaterials scienceHigh-pressureThermodynamicsContext (language use)02 engineering and technologyInelastic light scattering010402 general chemistry01 natural sciencesIsothermal processModuliAb initio quantum chemistry methodsMaterials ChemistryBulk modulusBulk modulusSynchrotron radiationMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyX-ray diffractionPhosphors0104 chemical sciencesMechanics of MaterialsFISICA APLICADAX-ray crystallographyCompressibility0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Pressure-induced phase transition in hydrothermally grown ZnO nanoflowers investigated by Raman and photoluminescence spectroscopy.

2015

This paper reports the pressure-dependent photoluminescence and Raman spectral investigation of hydrothermally synthesized ZnO nanoflowers at room temperature. Intrinsic near-band-edge UV emission from ZnO nanoflowers is monotonously blue-shifted under pressures up to 13.8 GPa with a pressure coefficient of 26 meV GPa(-1), and this pressure value is nearly 5 GPa above the transition pressure from the wurtzite to the rock salt phase for bulk ZnO. The Raman band corresponds to the wurtzite phase, the [Formula: see text] and [Formula: see text] modes were observed up to about 11 GPa from the spectra. The apparent discrepancy in the transition pressures as determined from photoluminescence and …

Phase transitionMaterials sciencePhotoluminescenceAnalytical chemistryMineralogyNanoparticleCondensed Matter PhysicsSpectral linesymbols.namesakePhase (matter)symbolsGeneral Materials ScienceSpectroscopyRaman spectroscopyWurtzite crystal structureJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Structural Characterization of Aurophilic Gold(I) Iodide under High Pressure

2019

[EN] The effects of pressure on the crystal structure of aurophilic tetragonal gold iodide have been studied by means of powder X-ray diffraction up to 13.5 GPa. We found evidence of the onset of a phase transition at 1.5 GPa that is more significant from 3.8 GPa. The low- and high-pressure phases coexist up to 10.7 GPa. Beyond 10.7 GPa, an irreversible process of amorphization takes place. We determined the axial and bulk compressibility of the ambient-pressure tetragonal phase of gold iodide up to 3.3 GPa. This is extremely compressible with a bulk modulus of 18.1(8) GPa, being as soft as a rare gas, molecular solids, or organometallic compounds. Moreover, its response to pressure is anis…

Diffractionchemistry.chemical_classification010405 organic chemistryIodidemacromolecular substancesCrystal structure010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCrystallographyTetragonal crystal systemstomatognathic systemchemistryHigh pressureFISICA APLICADAPhysical and Theoretical Chemistry
researchProduct

PrVO$_4$ under High Pressure: Effects on Structural, Optical and Electrical Properties

2020

In pursue of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO$_4$ under high pressure conditions, up until 24 GPa. We have found that PrVO$_4$ undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO$_4$-I--type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. Monazite phase is thus a metastable polymorph of PrVO$_4$. The monazite-BaWO$_4$-II transition is found…

Work (thermodynamics)Condensed Matter - Materials Science010405 organic chemistryChemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences010402 general chemistryCompression (physics)01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCondensed Matter - Other Condensed MatterHigh pressurePhase (matter)Physical and Theoretical ChemistryComposite materialOther Condensed Matter (cond-mat.other)
researchProduct

Optical properties of wurtzite and rock-salt ZnO under pressure

2005

Abstract This paper reports on the pressure dependence of the optical absorption edge of ZnO in the wurtzite and rock-salt phase, up to 14 GPa. Both vapor-phase monocrystals and pulsed-laser-deposition thin films have been investigated. In both types of samples the wurtzite to rock-salt transition is observed at 9.7±0.2 GPa. The absorption tail of the fundamental gap, as measured in monocrystals, exhibits a pressure coefficient of 24.5±2 meV/GPa. The evolution under pressure of the full absorption edge of the wurtzite phase is studied with thin film samples, yielding a slightly lower pressure coefficient (23.0±0.5 meV/GPa for the A–B exciton). Rock-salt ZnO is shown to be an indirect semico…

Materials scienceCondensed matter physicsBand gapbusiness.industryExcitonGeneral EngineeringPressure coefficientOpticsAbsorption edgePhase (matter)Thin filmAbsorption (electromagnetic radiation)businessWurtzite crystal structureMicroelectronics Journal
researchProduct

Structural study of α-Bi2O3 under pressure

2013

An experimental and theoretical study of the structural properties of monoclinic bismuth oxide (alpha-(BiO3)-O-2) under high pressures is here reported. Both synthetic and mineral bismite powder samples have been compressed up to 45 GPa and their equations of state have been determined with angle-dispersive x-ray diffraction measurements. Experimental results have been also compared with theoretical calculations which suggest the possibility of several phase transitions below 10 GPa. However, experiments reveal only a pressure-induced amorphization between 15 and 25 GPa, depending on sample quality and deviatoric stresses. The amorphous phase has been followed up to 45 GPa and its nature di…

DiffractionTransformationsPhase transitionTheoretical studyMaterials scienceOxideFOS: Physical scienceschemistry.chemical_elementThermodynamicsTheoretical calculationsPhase-transitionsCrystal structureElectrolyteBismuth oxideConductivityBismuthInduced amorphizationElectrolyteschemistry.chemical_compoundPowder samplesGeneral Materials ScienceDeviatoric stressX-ray diffraction measurementsConductivityCondensed Matter - Materials ScienceCrystal-structuresCompressibilityAmorphous phaseMaterials Science (cond-mat.mtrl-sci)In-situCondensed Matter PhysicsStructural studieschemistryFISICA APLICADAPressure-induced amorphizationStateMonoclinic crystal system
researchProduct

Optical properties of thin films of ZnO prepared by pulsed laser deposition

2004

In this paper we report on the structural features and optical properties of wurtzite ZnO films epitaxially grown on sapphire, fluorite and mica substrates by means of pulsed laser deposition (PLD). Post-deposition annealing results in a clear improvement of the film quality, reflected by the small width of the exciton-related lines in both the absorption and the photoluminescence spectra. Photoluminescence spectra revealed a multi-line structure which is identified in term of free excitons and excitons complexes with neutral donors and deep centers. The relative intensity of the PL lines mainly depends on the nature of the substrate used. Concerning optoelectronic applications it is especi…

PhotoluminescenceMaterials scienceAbsorption spectroscopyCondensed Matter::Otherbusiness.industryExcitonMetals and AlloysSurfaces and InterfacesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectEpitaxySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPulsed laser depositionCondensed Matter::Materials ScienceOpticsMaterials ChemistrySapphireOptoelectronicsThin filmbusinessWurtzite crystal structureThin Solid Films
researchProduct

Pressure-induced amorphization of YVO4:Eu3+ nanoboxes

2016

A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two …

DiffractionPhase transitionMaterials sciencePhotoluminescenceAnalytical chemistryBioengineeringNanotechnology02 engineering and technologyNanocrystal010402 general chemistry01 natural sciencessymbols.namesakePhase (matter)General Materials ScienceElectrical and Electronic EngineeringMechanical EngineeringPair distribution functionGeneral Chemistry021001 nanoscience & nanotechnologyAmorphous phaseAmorphization0104 chemical sciencesHigh pressureNanocrystalMechanics of MaterialsFISICA APLICADAsymbols0210 nano-technologyRaman spectroscopy
researchProduct

Crystal structure of sinhalite MgAlBO4 under high pressure

2015

We report on high-pressure angle-dispersive X-ray diffraction data up to 27 GPa for natural MgAlBO4 sinhalite mineral and ab initio total energy calculations. The experimental bulk modulus of sinhalite is B-0 = 171(3) GPa with a first-pressure derivative of B-0' = 4.2(3). A comparison with other olivine-type compounds shows that the value for B0 is 27% larger than that of Mg2SiO4 forsterite and 29% smaller than that of Al2BeO4 chrysoberyl. These differences are interpreted, on the basis of our ab initio calculations, in terms of the relative incompressibility of Al-O bonds in AlO6 octahedra (with a calculated bulk modulus of 250(1) GPa) as compared to Mg-O bonds in MgO6 octahedra (with a ca…

Ab initioSpinelSingle-crystalengineering.materialAb initio quantum chemistry methodsCationsPhysical and Theoretical ChemistryBulk modulusChrysoberylOlivineCompressionOxidesForsteriteGPASurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyChemistryGeneral EnergyPowder diffractionAugmented-wave methodFISICA APLICADAengineeringOrthorhombic crystal systemSingle crystalPowder diffraction
researchProduct

Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions

2018

Iron oxides are among the major constituents of the deep Earth’s interior. Among them, the epsilon phase of Fe2O3 is one of the less studied polymorphs and there is a lack of information about its structural, electronic and magnetic transformations at extreme conditions. Here we report the precise determination of its equation of state and a deep analysis of the evolution of the polyhedral units under compression, thanks to the agreement between our experiments and ab-initio simulations. Our results indicate that this material, with remarkable magnetic properties, is stable at pressures up to 27 GPa. Above 27 GPa, a volume collapse has been observed and ascribed to a change of the local env…

PHASE-TRANSFORMATIONEquation of stateMaterials scienceXRDScienceSILICATEIron oxideIRON(III) OXIDEGeneral Physics and Astronomy02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMantle (geology)ArticlePhysics::Geophysicschemistry.chemical_compoundCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONMAGNETIC PHASESpin crossoverPhase (matter)synchrotron0103 physical sciences[CHIM]Chemical SciencesCRYSTAL-STRUCTUREe-Fe2O3010306 general physicslcsh:ScienceMultidisciplinaryMössbauer spectroscopyIRONQIron(III) oxideSPIN-CROSSOVERGeneral Chemistry021001 nanoscience & nanotechnologySilicateTHERMAL-DECOMPOSITIONEXAFShigh pressureFE2O3 POLYMORPHdiamond anvil cellchemistry13. Climate actionChemical physicslcsh:Q0210 nano-technologyEarth (classical element)Nature Communications
researchProduct

Pressure-induced phase transition and bandgap collapse in the wide-bandgap semiconductor InTaO4

2016

A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond-anvil cell with ab initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure that shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic band-gap collapse o…

Quantum phase transitionPhase transitionMaterials scienceBand gapFerroicsFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceAb initio quantum chemistry methodsPhase (matter)Physics - Chemical Physics0103 physical sciences010306 general physicsPhase transitionChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)Semiconductor021001 nanoscience & nanotechnologyFISICA APLICADAOrthorhombic crystal system0210 nano-technologyHigh PressureMonoclinic crystal system
researchProduct

Structural evolution of theCuGaO2delafossite under high pressure

2004

We have performed pseudopotential calculations and x-ray-diffraction and x-ray-absorption measurements on the ${\mathrm{CuGaO}}_{2}$ delafossite under high pressure. We have completely characterized the structural behavior of the low pressure phase. We have found out that the a axis is more compressible than the c axis, and as a consequence the oxygen octahedra defined by the gallium environment tend to become more regular under high pressure. We have determined the internal parameter describing the oxygen position inside the unit cell, and seen that it is nearly constant when pressure is applied. We have observed an irreversible phase transition affecting the copper environment but not the…

Phase transitionMaterials scienceCondensed matter physicschemistry.chemical_elementengineering.materialCondensed Matter PhysicsOxygenCopperElectronic Optical and Magnetic MaterialsPseudopotentialDelafossitechemistryPhase (matter)X-ray crystallographyengineeringGalliumPhysical Review B
researchProduct

Synthesis and High-Pressure Study of Corundum-Type In2O3

2015

This work reports the high-pressure and high-temperature (HP-HT) synthesis of pure rhombohedral (corundum-type) phase of indium oxide (In2O3) from its most stable polymorph, cubic bixbyite-type In2O3, using a multianvil press. Structural and vibrational properties of corundum-type In2O3 (rh-In2O3) have been characterized by means of angle-dispersive powder X-ray diffraction and Raman scattering measurements at high pressures which have been compared to structural and lattice dynamics ab initio calculations. The equation of state and the pressure dependence of the Raman-active modes of the corundum-type phase are reported and compared to those of corundum (α-Al2O3). It can be concluded that …

High-pressureCorundumchemistry.chemical_elementCorundumengineering.materialIndium oxidesymbols.namesakeAb initio quantum chemistry methodsPhase (matter)Physical and Theoretical ChemistryHP-HT synthesisBulk modulusChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsX-ray diffractionCrystallographyGeneral EnergyFISICA APLICADAX-ray crystallographyRaman spectroscopyengineeringsymbolsOrthorhombic crystal systemAb initio calculationsRaman spectroscopyIndium
researchProduct

Pressure effects on the vibrational properties of alpha-Bi2O3: an experimental and theoretical study

2014

We report an experimental and theoretical high-pressure study of the vibrational properties of synthetic monoclinic bismuth oxide (alpha-Bi2O3), also known as mineral bismite. The comparison of Raman scattering measurements and theoretical lattice-dynamics ab initio calculations is key to understanding the complex vibrational properties of bismite. On one hand, calculations help in the symmetry assignment of phonons and to discover the phonon interactions taking place in this low-symmetry compound, which shows considerable phonon anticrossings; and, on the other hand, measurements help to validate the accuracy of first-principles calculations relating to this compound. We have also studied …

Models MolecularPhase transitionPhononHydrostatic pressureMolecular Conformationchemistry.chemical_elementMolecular physicsVibrationPhase TransitionBismuthCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsMaterials TestingPressureTransition TemperatureGeneral Materials ScienceComputer SimulationHydrostatic pressureChemistryLattice dynamicsCondensed Matter PhysicsAmorphizationAmorphous solidCrystallographyModels ChemicalFISICA APLICADAsymbolsSesquioxidesAb initio calculationsBismuthRaman scatteringMonoclinic crystal system
researchProduct

Unveiling the role of the lone electron pair in sesquioxides at high pressure: compressibility of β-Sb2O3

2021

The structural, vibrational and electronic properties of the compressed beta-Sb2O3 polymorph, a.k.a. mineral valentinite, have been investigated in a joint experimental and theoretical study up to 23 GPa. The compressibility of the lattice parameters, unit-cell volume and polyhedral unit volume as well as the behaviour of its Raman- and IR-active modes under compression have been interpreted on the basis of ab initio theoretical simulations. Valentinite shows an unusual compressibility up to 15 GPa with four different pressure ranges, whose critical pressures are 2, 4, and 10 GPa. The pressure dependence of the main structural units, the lack of soft phonons, and the electronic density char…

Raman scatteringPhase transitionMaterials sciencePhononAb initioThermodynamics02 engineering and technologyValentinite01 natural sciencesVibrational propertiesInorganic ChemistrySb2O3Phase (matter)0103 physical sciences010302 applied physicsElectron pairStructural propertiesCompressibility021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureElectronic propertiesFISICA APLICADAX-ray crystallographyCompressibility0210 nano-technologyElectronic densityDalton Transactions
researchProduct

Pressure-Driven Isostructural Phase Transition in InNbO4: In Situ Experimental and Theoretical Investigations

2017

[EN] The high-pressure behavior of technologically important visible-light photocatalytic semiconductor In.NbO4, adopting a monoclinic wolframite-type structure at ambient conditions, was investigated using synchrotron-based X-ray diffraction, Raman spectroscopic measurements, and first-principles calculations. The experimental results indicate the occurrence of a pressure-induced isostructural phase transition in the studied compound beyond 10.8 GPa. The large volume collapse associated with the phase transition and the coexistence of two phases observed over a wide range of pressure shows the nature of transition to be first-order. There is an increase in the oxygen anion coordination num…

X-Ray-DiffractionPhase transitionCoordination numberThermodynamicsInitio molecular-dynamics02 engineering and technologyEfficiency01 natural sciencesSynchrotronInorganic Chemistrysymbols.namesakePhase (matter)0103 physical sciencesCrystalTEORIA DE LA SEÑAL Y COMUNICACIONESPhysical and Theoretical ChemistryIsostructuralTotal-Energy calculations010306 general physicsRaman-ScatteringBulk modulusChemistryAb-Initio021001 nanoscience & nanotechnologyCrystallographyFISICA APLICADAsymbols0210 nano-technologyRaman spectroscopyStabilityAmbient pressureMonoclinic crystal systemWave basis-set
researchProduct

Role ofp-dands-dinteractions in the electronic structure and band gap of Zn1−xMxO (M=Cr, Mn, Fe, Co, Ni, and Cu): Photoelectron and optical spectrosc…

2012

We report an investigation on the effect of $p$-$d$ and $s$-$d$ interactions in the electronic structure, and especially in the band-gap value, of wurtzite wide-gap diluted magnetic semiconductors Zn${}_{1\ensuremath{-}x}$${M}_{x}$O ($M=\mathrm{Cr}$, Mn, Fe, Co, Ni, Cu). Thin films prepared by pulsed laser deposition are investigated by means of optical absorption at low-temperature and photoelectron spectroscopy. Pure wurzite phase is shown to be maintained for Co and Mn concentrations up to 25$%$ and for Cr up to 10$%$, while in the case of Fe, Ni, and Cu, other phases are present for concentrations higher than 5, 2, and 1$%$, respectively. The band gap of the Zn${}_{1\ensuremath{-}x}$${M…

Materials scienceX-ray photoelectron spectroscopyBand gapBinding energyAnalytical chemistryDensity functional theoryAbsorption (logic)Electronic structureAtomic physicsCondensed Matter PhysicsElectronic band structureSpectroscopyElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Experimental and Theoretical Study of SbPO 4 under Compression

2019

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the non-bonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a-axis and linked by weak Sb-O electrostatic interactions. In fact, Sb is 4-fold coordination with O similar to what occurs with the P-O coordination, despite the large difference of ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of …

Phase transitionphosphatesFOS: Physical sciencesTriclinic crystal system010402 general chemistry01 natural sciencesphysical and chemical processesInorganic ChemistryElectronegativityPhase (matter)Physical and Theoretical ChemistryAnisotropyCondensed Matter - Materials ScienceIonic radius010405 organic chemistryChemistryMaterials Science (cond-mat.mtrl-sci)Compression (physics)compression3. Good health0104 chemical sciencesChemical physicsFISICA APLICADAchemical structurecompressibilityMonoclinic crystal systemInorganic Chemistry
researchProduct

Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity.

2021

[EN] YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation o…

Phase transitionMaterials scienceHigh-pressure02 engineering and technology010402 general chemistryInelastic light scattering01 natural sciencessymbols.namesakeAb initio quantum chemistry methodsMaterials ChemistryAnisotropyBulk modulusCondensed matter physicsSynchrotron radiationMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesX-ray diffractionPhosphorsMechanics of MaterialsMolecular vibrationFISICA APLICADACompressibilitysymbolsAnisotropy0210 nano-technologyRaman spectroscopyRaman scattering
researchProduct

Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach

2014

The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transit…

DiffractionPhase transitionEquation of stateHigh-pressurePhononSpinelCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsPhase (matter)Physical and Theoretical ChemistryRamanCondensed matter physicsChemistryDefect chalcopyriteSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrdered-vacancy compoundsX-ray diffractionCrystallographyGeneral EnergyFISICA APLICADAsymbolsRaman spectroscopyRaman scattering
researchProduct

Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides

2012

We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd 2Mo 3N, Ni 2Mo 3C 0.52N 0.48, Co 3Mo 3C 0.62N 0.38, and Fe 3Mo 3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, the least compressible material being Fe 3Mo 3C, B 0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content is increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials. © 2012 American Physic…

Materials scienceHigh-pressureAnalytical chemistryUltra-incompressibleFOS: Physical scienceschemistry.chemical_elementNitrideengineering.materialCarbideNitridesStructural stabilityPhysics - Chemical PhysicsBimetallic stripChemical Physics (physics.chem-ph)MolybdenumCondensed Matter - Materials ScienceCompoundsMaterials Science (cond-mat.mtrl-sci)DiamondCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBeamlinechemistryMolybdenumFISICA APLICADAX-ray crystallographyCompressibilityengineeringCarbidesPd2Mo3N
researchProduct

Structural and electrical study of the topological insulator SnBi2Te4 at high pressures

2016

We report high-pressure X-ray diffraction and electrical measurements of the topological insulator SnBi2Te4 at room temperature. The pressure dependence of the structural properties of the most stable phase of SnBi2Te4 at ambient conditions (trigonal phase) have been experimentally determined and compared with results of our ab initio calculations. Furthermore, a comparison of SnBi2Te4 with the parent compound Bi2Te3 shows that the central TeSnTe trilayer, which substitutes the Te layer at the center of the TeBiTeBiTe layers of Bi2Te3, plays a minor role in the compression of SnBi2Te4. Similar to Bi2Te3, our resistance measurements and electronic band structure simulations in SnBi2Te4 at hi…

DiffractionElectronic topological transitionMaterials science02 engineering and technology01 natural sciencesAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesMaterials ChemistryElectrical measurementsTopological insulators010306 general physicsElectronic band structureCondensed matter physicsMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureMechanics of MaterialsHigh pressureTopological insulatorFISICA APLICADAX-ray crystallographyTransport properties0210 nano-technology
researchProduct

High-pressure Raman investigation of high index facets bounded alpha-Fe2O3 pseudocubic crystals

2021

[EN] High index facet bounded alpha-Fe2O3 pseudocubic crystals has gained the attention of the scientific community due to its promising electrochemical sensing response towards aqueous ammonia. The structural stability of alpha-Fe2O3 pseudocubic crystals is investigated through high-pressure Raman spectroscopy up to 22.2 GPa, and those results are compared with our ab initio theoretical calculations. The symmetry of the experimental Raman-active modes has been assigned by comparison with theoretical data. In addition to the Raman-active modes, two additional Raman features are also detected, whose intensity increases with compression. The origin of these two additional peaks addressed in t…

Materials scienceBeta-Fe2O3 pseudocubic crystals02 engineering and technology01 natural sciencesMolecular physicssymbols.namesake0103 physical sciencesIron oxideGeneral Materials ScienceFacet010306 general physicsAqueous solution021001 nanoscience & nanotechnologyCondensed Matter PhysicsSymmetry (physics)High pressureStructural stabilityBounded functionFISICA APLICADARaman spectroscopysymbols0210 nano-technologyRaman spectroscopyIntensity (heat transfer)Alfa-Fe2O3Curse of dimensionality
researchProduct

Structural, vibrational and electrical study of compressed BiTeBr

2016

Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobilit…

DiffractionElectron mobilityPhase transitionMaterials sciencepolovodičeletadlovznikchemistry.chemical_elementMetoda rozšířené vlnasemiconductors02 engineering and technology01 natural sciencesBismuthpressureCondensed Matter::Materials Sciencesymbols.namesakeinitio molekulové dynamikyAb initio quantum chemistry methodsinitio molecular-dynamicsbasis-set0103 physical sciencesemergenceZákladem-setTopological orderphase010306 general physicstlakCondensed matter physicsbusiness.industrytransitionpřechodfáze021001 nanoscience & nanotechnologytotal-energy calculationsSemiconductorchemistryFISICA APLICADAaugmented-wave methodsymbolsplaneCelkové energetické výpočty0210 nano-technologybusinessRaman scattering
researchProduct

Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He

2016

Compression of arsenolite has been studied from a joint experimental and theoretical point of view. Experiments on this molecular solid at high pressures with different pressure-transmitting media have been interpreted thanks to state-of-the-art ab initio calculations. Our results confirm arsenolite as one of the most compressible minerals and provide evidence for ordered helium trapping above 3 GPa between adamantane-type $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}$ cages. Our calculations indicate that, at relatively small pressures, helium establishes rather localized structural bonds with arsenic forming a compound with stoichiometry $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}\ifmmode\c…

PhysicsElectron pairchemistry.chemical_element02 engineering and technologyTrappingengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallographyMolecular solidchemistryAb initio quantum chemistry methodsMechanical stabilityArsenoliteengineering0210 nano-technologyStoichiometryHeliumPhysical Review B
researchProduct

Compressibility Systematics of Calcite-Type Borates: An Experimental and Theoretical Structural Study on ABO(3) (A = Al, Sc, Fe, and In)

2014

The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibi…

DiffractionAb initioThermodynamicschemistry.chemical_elementCrystal structureHigh-pressure behaviorchemistry.chemical_compoundstructure carbonatesCationshigh pressure behavior; augmented-wave method; structure carbonatesPhysical and Theoretical ChemistryBoronCalciteCrystal-structuresMetal refinementOxidesFeBO3Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral Energyhigh pressure behaviorchemistryOctahedronAugmented-wave methodFISICA APLICADATransitionCompressibilityaugmented-wave methodCarbonateStructure carbonates
researchProduct

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

2020

[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…

Phase transitionContext (language use)[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesInorganic Chemistrysymbols.namesakeChemical structureCationsVan der Waalselectronic topologicalPhysical and Theoretical ChemistryCompressibility010405 organic chemistryChemistryCompressionDeformation0104 chemical scienceshigh pressuremetavalent bondingChemical physicsFISICA APLICADAMolecular vibration[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsCondensed Matter::Strongly Correlated ElectronsFermi resonanceSnSb2Te4pressure-induced decompositionvan der Waals forceTernary operationRaman spectroscopyRaman scatteringbonding characterInorganic Chemistry
researchProduct

Electronic structure and optical properties of CdTe rock-salt high pressure phase

2003

This paper reports on optical absorption and reflectance measurements in thin CdTe samples up to 15 GPa. All studied samples become virtually opaque at the pressure transition between the zinc-blende and rock-salt phases (3.9 GPa). As pressure increases up to 10 GPa, a relative transparency region is observed between 1.2 eV and 2.4 eV, whose high energy edge shifts to higher photon energies. Above 10 GPa the transparency region gradually shrinks and disappears at about 11 GPa. The low energy side of the absorption spectrum is attributed to free carrier absorption, as electronic structure calculations show that rock-salt CdTe is a semimetal or a low gap semiconductor. Band filling effects lo…

Phase transitionAbsorption spectroscopyCondensed matter physicsbusiness.industryChemistryBand gapCondensed Matter PhysicsSemimetalElectronic Optical and Magnetic MaterialsOpticsAttenuation coefficientPhase (matter)Free carrier absorptionAbsorption (electromagnetic radiation)businessphysica status solidi (b)
researchProduct

Pressure-induced phase transformation in zircon-type orthovanadate SmVO4from experiment and theory

2016

The compression behavior of zircon-type samarium orthovanadate, SmVO4, has been investigated using synchrotron-based powder x-ray diffraction and ab-initio calculations up to 21 GPa. The results indicate the instability of ambient zircon phase at around 6 GPa, which transforms to a high-density scheelite-type phase. The high-pressure phase remains stable up to 21 GPa, the highest pressure reached in the present investigations. On pressure release, the scheelite phase is recovered. Crystal structure of high-pressure phase and equations of state (EOS) for the zircon- and scheelite-type phases have been determined. Various compressibilities such as bulk, axial and bond, estimated from the expe…

Diffraction86Materials scienceFOS: Physical scienceschemistry.chemical_elementThermodynamics02 engineering and technologyCrystal structure01 natural sciencesInstabilityPhysics::GeophysicsCondensed Matter::Materials Sciencechemistry.chemical_compoundAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsSamariumchemistryScheelite0210 nano-technologyZirconJournal of Physics: Condensed Matter
researchProduct

Transition path to a dense efficient-packed post-delafossite phase. Crystal structure and evolution of the chemical bonding

2021

We are thankful for the financial support received from the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación under national projects PGC2018-094417-B-I00 (co-financed by EU FEDER funds), MAT2016-75586-C4-1-P/2-P, FIS2017-83295-P, PID2019-106383GB-C41/C42 and RED2018- 102612-T (MALTA Consolider), and from Generalitat Valenciana under project PROMETEO/2018/123. D.S-P, A.O.R, and J.A.S acknowledge financial support of the Spanish MINECO for the RyC-2014-15643, RyC-2016-20301, and RyC-2015-17482 Ramón y Cajal Grants, respectively.

Phase transitionMaterials scienceMechanical EngineeringMetals and Alloys02 engineering and technologyCrystal structureengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBond order0104 chemical sciencesCrystalDelafossiteCrystallographyChemical bondMechanics of MaterialsAb initio quantum chemistry methodsPhase (matter)Materials Chemistryengineering0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Pressure dependence of photoluminescence of InAs/InP self-assembled quantum wires

2007

6 páginas, 4 figuras, 1 tabla.-- PACS 62.50.+ p, 73.21.Hb, 78.55.Cr, 78.67.Lt, 81.15.Hi, 81.16.Dn

Phase transitionPhotonPhotoluminescenceCondensed matter physicsCondensed Matter::OtherChemistryHydrostatic pressureElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceQuantum dotMetastabilityPhysics::Accelerator PhysicsMolecular beam epitaxyphysica status solidi (b)
researchProduct

Structural and vibrational study of pseudocubic CdIn2Se4 under compression

2014

We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se…

Phase transitionEquation of stateHigh-pressureHydrostatic pressureAb initioThermodynamicsInitio molecular-dynamicsCondensed Matter::Materials Sciencesymbols.namesakePhase (matter)Physical and Theoretical ChemistryTotal-Energy calculationsPseudocubicHydrostatic pressureRaman-ScatteringChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrdered-vacancy compoundsX-ray diffractionCrystallographyGeneral EnergyCompound semiconductorsAugmented-wave methodFISICA APLICADAX-ray crystallographyAb initiosymbolsCondensed Matter::Strongly Correlated ElectronsRaman spectroscopyInduced phase-transitionsRaman scattering
researchProduct

Determining the efficiency of optical sources using a smartphone's ambient light sensor

2017

This work reports the use of a smartphone’s ambient light sensor as a valuable tool to study and characterize the efficiency of an optical source. Here, we have measured both luminous efficacy and efficiency of several optical sources (incandescent bulb and halogen lamp) as a function of the electric power consumed and the distance to the optical detector. The illuminance of LEDs as a function of the distance to the optical detector is characterized for different wavelength emissions. Analysis of the results confirms an inverse-square law of the illuminance with the detector–source distance and shows good agreement with values obtained by classical experiments. This experience will trigger …

General Physics and AstronomyPhotodetectorPhysics::Optics01 natural scienceslaw.inventionOpticslawAmbient light sensor0103 physical sciences010306 general physicsPhysicsIncandescent light bulbbusiness.industry05 social sciences050301 educationIlluminanceFísicaCiència EnsenyamentWavelengthHalogen lampFISICA APLICADALuminous efficiencyElectric powerSmartphoneLuminous efficacybusiness0503 educationLight-emitting diode
researchProduct

Complex high-pressure polymorphism of barium tungstate

2012

We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…

Phase transitionMaterials science02 engineering and technologyCrystal structureBawo47. Clean energy01 natural sciencesX-rayTetragonal crystal systemsymbols.namesakeAb initio quantum chemistry methods0103 physical sciencesCrystal010306 general physicsCaoo4Refinement021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyFISICA APLICADA[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]X-ray crystallographyTransitionsymbolsPACS: 62.50.−p 61.50.Ks 61.05.cp 63.20.ddCell0210 nano-technologyRaman spectroscopyPowder diffractionPowder DiffractionMonoclinic crystal system
researchProduct

Correlation between optical and transport properties of Ga-doped ZnO thin films prepared by pulsed laser deposition

2006

Abstract In this paper we report on the correlation between the transport and optical properties of Ga-doped ZnO films epitaxially grown on C-oriented sapphire substrates by means of pulsed laser deposition. Thin films with electron concentrations ranging between 10 20 and 10 21  cm −3 were prepared from targets containing 0.25–5 at.% Ga. The Ga content in the thin films was estimated by XPS, from the ratio between the intensities of the 2p peaks of Ga and Zn. The electron concentration in the films is very close to the Ga content for films prepared from low Ga content targets even at high deposition temperature. For Ga contents in the target larger than 1%, the Ga content in the films incr…

Electron mobilityMaterials sciencePhotoluminescenceAbsorption edgeX-ray photoelectron spectroscopyDopingAnalytical chemistryGeneral Materials ScienceElectrical and Electronic EngineeringThin filmCondensed Matter PhysicsEpitaxyPulsed laser depositionSuperlattices and Microstructures
researchProduct

Phase stability and electronic structure of iridium metal at the megabar range

2019

[EN] The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was char…

0301 basic medicineMaterials scienceAbsorption spectroscopySciencechemistry.chemical_elementElectronic structureMolecular electronic transitionArticle03 medical and health sciencessymbols.namesake0302 clinical medicineTransition metalIridiumSpectroscopyCondensed-matter physicsSpectroscopyExafsBulk modulusMultidisciplinaryFermi levelQRCondensed Matter Physics030104 developmental biologychemistryChemical physicsFISICA APLICADAsymbolsMedicineDen kondenserade materiens fysik030217 neurology & neurosurgeryPressures
researchProduct

High-pressure structural phase transition inMnWO4

2015

The pressure-induced phase transition of the multiferroic manganese tungstate MnWO4 is studied on single crystals using synchrotron x-ray diffraction and Raman spectroscopy. We observe the monoclinic P2/c to triclinic P (1) over bar phase transition at 20.1 GPa and get insight on the phase transition mechanism from the appearance of tilted triclinic domains. Selective Raman spectroscopy experiments with single crystals have shown that the onset of the phase transition occurs 5 GPa below the previously reported pressure obtained from experiments performed with powder samples.

DiffractionPhase transitionMaterials scienceTungstatesCrystal structureTriclinic crystal systemCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceCrystallographychemistry.chemical_compoundsymbols.namesakeCrystal-structureTungstatechemistryFISICA APLICADAsymbolsCondensed Matter::Strongly Correlated ElectronsMultiferroicsRaman spectroscopyDiffractionMonoclinic crystal systemPhysical Review B
researchProduct

CSD 2044072: Experimental Crystal Structure Determination

2020

Related Article: Juan Angel Sans, Francisco Javier Manjón, André Luis de Jesus Pereira, Javier Ruiz-Fuertes, Catalin Popescu, Alfonso Muñoz, Plácida Rodríguez-Hernández, Julio Pellicer-Porres, Vanesa Paula Cuenca-Gotor, Julia Contreras-García, Jordi Ibañez, and Virginia Monteseguro|2020|ICSD Communication|||

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct