6533b86efe1ef96bd12cbda7
RESEARCH PRODUCT
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
Juan Angel SansA. L. J. PereiraVladislav V. UrsakiDavid Santamaría-pérezFrancisco Javier ManjonAlfonso MunozIon TiginyanuRosario VilaplanaOscar GomisCatalin PopescuPlácida Rodríguez-hernándezsubject
Phase transitionEquation of stateHigh-pressureHydrostatic pressureAb initioThermodynamicsInitio molecular-dynamicsCondensed Matter::Materials Sciencesymbols.namesakePhase (matter)Physical and Theoretical ChemistryTotal-Energy calculationsPseudocubicHydrostatic pressureRaman-ScatteringChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrdered-vacancy compoundsX-ray diffractionCrystallographyGeneral EnergyCompound semiconductorsAugmented-wave methodFISICA APLICADAX-ray crystallographyAb initiosymbolsCondensed Matter::Strongly Correlated ElectronsRaman spectroscopyInduced phase-transitionsRaman scatteringdescription
We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2014-11-20 |