0000000000014879

AUTHOR

A. L. J. Pereira

showing 15 related works from this author

Structural and vibrational behavior of cubic Cu1.80(3)Se cuprous selenide, berzelianite, under compression

2020

[EN] We have performed an experimental study of the crystal structure and lattice dynamics of cubic Cu1.80(3)Se at ambient temperature and high pressures. Two reversible phase transitions were found at 2.9 and 8.7 GPa. The indexation of the angle-dispersive synchrotron x-ray diffraction patterns suggests a large orthorhombic cell and a monoclinic cell for the high-pressure phases. Raman measurements provide additional information on the local structure. The compressibility of the three ambient temperature phases has been determined and compared to that of other sulphides and selenides.

DiffractionPhase transitionMaterials scienceHigh-pressureBerzelianiteAnalytical chemistry02 engineering and technologyCrystal structure010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundsymbols.namesakelawSelenideMaterials ChemistryCompressibilityMechanical EngineeringCrystal structureMetals and Alloys021001 nanoscience & nanotechnologySynchrotron0104 chemical scienceschemistryMechanics of MaterialsPhase transitionsFISICA APLICADAsymbolsOrthorhombic crystal system0210 nano-technologyRaman spectroscopyMonoclinic crystal systemCopper selenide
researchProduct

Structural and vibrational study of cubic Sb2O3under high pressure

2012

We report an experimental and theoretical study of antimony oxide (Sb${}_{2}$O${}_{3}$) in its cubic phase (senarmontite) under high pressure. X-ray diffraction and Raman scattering measurements up to 18 and 25 GPa, respectively, have been complemented with ab initio total-energy and lattice-dynamics calculations. X-ray diffraction measurements do not provide evidence of a space-group symmetry change in senarmontite up to 18 GPa. However, Raman scattering measurements evidence changes in the pressure coefficients of the Raman mode frequencies at 3.5 and 10 GPa, respectively. The behavior of the Raman modes with increasing pressure up to 25 GPa is fully reproduced by the lattice-dynamics cal…

Phase transitionMaterials scienceAb initioCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakeCrystallographychemistryAntimony trioxideX-ray crystallographysymbolsOrthorhombic crystal systemRaman spectroscopyPowder diffractionRaman scatteringPhysical Review B
researchProduct

Experimental and Theoretical Study of Bi2O2Se Under Compression

2018

[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…

Phase transitionEquation of stateMaterials scienceequations of stateBand gap02 engineering and technology01 natural sciencesTetragonal crystal systemCondensed Matter::Materials ScienceAb initio quantum chemistry methodsbismuth compounds0103 physical sciencescalculationsPhysical and Theoretical Chemistry010306 general physicsCondensed matter physicsbusiness.industrystability021001 nanoscience & nanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergySemiconductorStructural stabilityFISICA APLICADAHardening (metallurgy)electronic properties0210 nano-technologybusiness
researchProduct

Structural study of α-Bi2O3 under pressure

2013

An experimental and theoretical study of the structural properties of monoclinic bismuth oxide (alpha-(BiO3)-O-2) under high pressures is here reported. Both synthetic and mineral bismite powder samples have been compressed up to 45 GPa and their equations of state have been determined with angle-dispersive x-ray diffraction measurements. Experimental results have been also compared with theoretical calculations which suggest the possibility of several phase transitions below 10 GPa. However, experiments reveal only a pressure-induced amorphization between 15 and 25 GPa, depending on sample quality and deviatoric stresses. The amorphous phase has been followed up to 45 GPa and its nature di…

DiffractionTransformationsPhase transitionTheoretical studyMaterials scienceOxideFOS: Physical scienceschemistry.chemical_elementThermodynamicsTheoretical calculationsPhase-transitionsCrystal structureElectrolyteBismuth oxideConductivityBismuthInduced amorphizationElectrolyteschemistry.chemical_compoundPowder samplesGeneral Materials ScienceDeviatoric stressX-ray diffraction measurementsConductivityCondensed Matter - Materials ScienceCrystal-structuresCompressibilityAmorphous phaseMaterials Science (cond-mat.mtrl-sci)In-situCondensed Matter PhysicsStructural studieschemistryFISICA APLICADAPressure-induced amorphizationStateMonoclinic crystal system
researchProduct

Crystal structure of sinhalite MgAlBO4 under high pressure

2015

We report on high-pressure angle-dispersive X-ray diffraction data up to 27 GPa for natural MgAlBO4 sinhalite mineral and ab initio total energy calculations. The experimental bulk modulus of sinhalite is B-0 = 171(3) GPa with a first-pressure derivative of B-0' = 4.2(3). A comparison with other olivine-type compounds shows that the value for B0 is 27% larger than that of Mg2SiO4 forsterite and 29% smaller than that of Al2BeO4 chrysoberyl. These differences are interpreted, on the basis of our ab initio calculations, in terms of the relative incompressibility of Al-O bonds in AlO6 octahedra (with a calculated bulk modulus of 250(1) GPa) as compared to Mg-O bonds in MgO6 octahedra (with a ca…

Ab initioSpinelSingle-crystalengineering.materialAb initio quantum chemistry methodsCationsPhysical and Theoretical ChemistryBulk modulusChrysoberylOlivineCompressionOxidesForsteriteGPASurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyChemistryGeneral EnergyPowder diffractionAugmented-wave methodFISICA APLICADAengineeringOrthorhombic crystal systemSingle crystalPowder diffraction
researchProduct

Pressure effects on the vibrational properties of alpha-Bi2O3: an experimental and theoretical study

2014

We report an experimental and theoretical high-pressure study of the vibrational properties of synthetic monoclinic bismuth oxide (alpha-Bi2O3), also known as mineral bismite. The comparison of Raman scattering measurements and theoretical lattice-dynamics ab initio calculations is key to understanding the complex vibrational properties of bismite. On one hand, calculations help in the symmetry assignment of phonons and to discover the phonon interactions taking place in this low-symmetry compound, which shows considerable phonon anticrossings; and, on the other hand, measurements help to validate the accuracy of first-principles calculations relating to this compound. We have also studied …

Models MolecularPhase transitionPhononHydrostatic pressureMolecular Conformationchemistry.chemical_elementMolecular physicsVibrationPhase TransitionBismuthCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsMaterials TestingPressureTransition TemperatureGeneral Materials ScienceComputer SimulationHydrostatic pressureChemistryLattice dynamicsCondensed Matter PhysicsAmorphizationAmorphous solidCrystallographyModels ChemicalFISICA APLICADAsymbolsSesquioxidesAb initio calculationsBismuthRaman scatteringMonoclinic crystal system
researchProduct

Unveiling the role of the lone electron pair in sesquioxides at high pressure: compressibility of β-Sb2O3

2021

The structural, vibrational and electronic properties of the compressed beta-Sb2O3 polymorph, a.k.a. mineral valentinite, have been investigated in a joint experimental and theoretical study up to 23 GPa. The compressibility of the lattice parameters, unit-cell volume and polyhedral unit volume as well as the behaviour of its Raman- and IR-active modes under compression have been interpreted on the basis of ab initio theoretical simulations. Valentinite shows an unusual compressibility up to 15 GPa with four different pressure ranges, whose critical pressures are 2, 4, and 10 GPa. The pressure dependence of the main structural units, the lack of soft phonons, and the electronic density char…

Raman scatteringPhase transitionMaterials sciencePhononAb initioThermodynamics02 engineering and technologyValentinite01 natural sciencesVibrational propertiesInorganic ChemistrySb2O3Phase (matter)0103 physical sciences010302 applied physicsElectron pairStructural propertiesCompressibility021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureElectronic propertiesFISICA APLICADAX-ray crystallographyCompressibility0210 nano-technologyElectronic densityDalton Transactions
researchProduct

Experimental and Theoretical Study of SbPO 4 under Compression

2019

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the non-bonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a-axis and linked by weak Sb-O electrostatic interactions. In fact, Sb is 4-fold coordination with O similar to what occurs with the P-O coordination, despite the large difference of ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of …

Phase transitionphosphatesFOS: Physical sciencesTriclinic crystal system010402 general chemistry01 natural sciencesphysical and chemical processesInorganic ChemistryElectronegativityPhase (matter)Physical and Theoretical ChemistryAnisotropyCondensed Matter - Materials ScienceIonic radius010405 organic chemistryChemistryMaterials Science (cond-mat.mtrl-sci)Compression (physics)compression3. Good health0104 chemical sciencesChemical physicsFISICA APLICADAchemical structurecompressibilityMonoclinic crystal systemInorganic Chemistry
researchProduct

Structural and electrical study of the topological insulator SnBi2Te4 at high pressures

2016

We report high-pressure X-ray diffraction and electrical measurements of the topological insulator SnBi2Te4 at room temperature. The pressure dependence of the structural properties of the most stable phase of SnBi2Te4 at ambient conditions (trigonal phase) have been experimentally determined and compared with results of our ab initio calculations. Furthermore, a comparison of SnBi2Te4 with the parent compound Bi2Te3 shows that the central TeSnTe trilayer, which substitutes the Te layer at the center of the TeBiTeBiTe layers of Bi2Te3, plays a minor role in the compression of SnBi2Te4. Similar to Bi2Te3, our resistance measurements and electronic band structure simulations in SnBi2Te4 at hi…

DiffractionElectronic topological transitionMaterials science02 engineering and technology01 natural sciencesAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesMaterials ChemistryElectrical measurementsTopological insulators010306 general physicsElectronic band structureCondensed matter physicsMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureMechanics of MaterialsHigh pressureTopological insulatorFISICA APLICADAX-ray crystallographyTransport properties0210 nano-technology
researchProduct

Structural, vibrational and electrical study of compressed BiTeBr

2016

Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobilit…

DiffractionElectron mobilityPhase transitionMaterials sciencepolovodičeletadlovznikchemistry.chemical_elementMetoda rozšířené vlnasemiconductors02 engineering and technology01 natural sciencesBismuthpressureCondensed Matter::Materials Sciencesymbols.namesakeinitio molekulové dynamikyAb initio quantum chemistry methodsinitio molecular-dynamicsbasis-set0103 physical sciencesemergenceZákladem-setTopological orderphase010306 general physicstlakCondensed matter physicsbusiness.industrytransitionpřechodfáze021001 nanoscience & nanotechnologytotal-energy calculationsSemiconductorchemistryFISICA APLICADAaugmented-wave methodsymbolsplaneCelkové energetické výpočty0210 nano-technologybusinessRaman scattering
researchProduct

Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He

2016

Compression of arsenolite has been studied from a joint experimental and theoretical point of view. Experiments on this molecular solid at high pressures with different pressure-transmitting media have been interpreted thanks to state-of-the-art ab initio calculations. Our results confirm arsenolite as one of the most compressible minerals and provide evidence for ordered helium trapping above 3 GPa between adamantane-type $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}$ cages. Our calculations indicate that, at relatively small pressures, helium establishes rather localized structural bonds with arsenic forming a compound with stoichiometry $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}\ifmmode\c…

PhysicsElectron pairchemistry.chemical_element02 engineering and technologyTrappingengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallographyMolecular solidchemistryAb initio quantum chemistry methodsMechanical stabilityArsenoliteengineering0210 nano-technologyStoichiometryHeliumPhysical Review B
researchProduct

Compressibility Systematics of Calcite-Type Borates: An Experimental and Theoretical Structural Study on ABO(3) (A = Al, Sc, Fe, and In)

2014

The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibi…

DiffractionAb initioThermodynamicschemistry.chemical_elementCrystal structureHigh-pressure behaviorchemistry.chemical_compoundstructure carbonatesCationshigh pressure behavior; augmented-wave method; structure carbonatesPhysical and Theoretical ChemistryBoronCalciteCrystal-structuresMetal refinementOxidesFeBO3Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral Energyhigh pressure behaviorchemistryOctahedronAugmented-wave methodFISICA APLICADATransitionCompressibilityaugmented-wave methodCarbonateStructure carbonates
researchProduct

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

2020

[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…

Phase transitionContext (language use)[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesInorganic Chemistrysymbols.namesakeChemical structureCationsVan der Waalselectronic topologicalPhysical and Theoretical ChemistryCompressibility010405 organic chemistryChemistryCompressionDeformation0104 chemical scienceshigh pressuremetavalent bondingChemical physicsFISICA APLICADAMolecular vibration[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsCondensed Matter::Strongly Correlated ElectronsFermi resonanceSnSb2Te4pressure-induced decompositionvan der Waals forceTernary operationRaman spectroscopyRaman scatteringbonding characterInorganic Chemistry
researchProduct

Structural and vibrational study of pseudocubic CdIn2Se4 under compression

2014

We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se…

Phase transitionEquation of stateHigh-pressureHydrostatic pressureAb initioThermodynamicsInitio molecular-dynamicsCondensed Matter::Materials Sciencesymbols.namesakePhase (matter)Physical and Theoretical ChemistryTotal-Energy calculationsPseudocubicHydrostatic pressureRaman-ScatteringChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrdered-vacancy compoundsX-ray diffractionCrystallographyGeneral EnergyCompound semiconductorsAugmented-wave methodFISICA APLICADAX-ray crystallographyAb initiosymbolsCondensed Matter::Strongly Correlated ElectronsRaman spectroscopyInduced phase-transitionsRaman scattering
researchProduct

Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature.

2014

High-pressure powder X-ray diffraction and Raman scattering measurements in cubic bixbyite-type indium oxide (c-In2O3) have been performed at room temperature. On increasing pressure c-In2O3 undergoes a transition to the Rh2O3-II structure but on decreasing pressure Rh2O3-II-type In2O3 undergoes a transition to a previously unknown phase with Pbca space group which is isostructural to Rh2O3-III. On further decrease of pressure, we observed a phase transition to the metastable corundum-type In2O3 near room conditions. Recompression of the metastable corundum-type In2O3 at room temperature leads to a transition to the Rh2O3-III phase, thus showing that the Rh2O3-III phase is the post-corundum…

Phase transitionAnalytical chemistryInitio molecular-dynamicschemistry.chemical_elementCrystal structureAmbient-pressureSynchrotronAb initio quantum chemistry methodsMetastabilityPhase (matter)Total-Energy calculationsPhysical and Theoretical ChemistryPhase diagramOxideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRhombohedral IN2O3CrystallographyGeneral EnergyCrystal-structurechemistryFISICA APLICADATransitionDiffractionIndiumWave basis-setAmbient pressureThe Journal of Physical Chemistry C
researchProduct