0000000000124147

AUTHOR

Dominik Daisenberger

showing 11 related works from this author

Phase diagram of calcium at high pressure and high temperature

2018

Resistively heated diamond-anvil cells have been used together with synchrotron x-ray diffraction to investigate the phase diagram of calcium up to 50 GPa and 800 K. The phase boundaries between the Ca-I (fcc), Ca-II (bcc), and Ca-III (simple cubic, sc) phases have been determined at these pressure-temperature conditions, and the ambient temperature equation of state has been generated. The equation of state parameters at ambient temperature have been determined from the experimental compression curve of the observed phases by using third-order Birch-Murnaghan and Vinet equations. A thermal equation of state was also determined for Ca-I and Ca-II by combining the room-temperature Birch-Murn…

DiffractionEquation of stateMaterials sciencePhysics and Astronomy (miscellaneous)Thermodynamics02 engineering and technologyCubic crystal system01 natural sciencesThermal expansionPhysics::GeophysicsSynchrotronCondensed Matter::Materials SciencePhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsPhase diagramAlkaline earth metalTransitionsEquation-of-state021001 nanoscience & nanotechnologyX-ray crystallographyX-Ray-diffractionAlkaline-earth metals0210 nano-technology
researchProduct

Gold(i) sulfide: Unusual bonding and an unexpected computational challenge in a simple solid

2019

We report the experimental high-pressure crystal structure and equation of state of gold(I) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of cov…

Bulk modulusMaterials science010405 organic chemistryGold(I) sulfideIonic bondingGeneral ChemistryCubic crystal system010402 general chemistry01 natural sciences0104 chemical sciencesElectronegativitychemistry.chemical_compoundChemical bondchemistryChemical physicsCovalent bondValence bond theory
researchProduct

An Ultrahigh CO2-Loaded Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and Temperatures

2018

[EN] We report the formation of an ultrahigh CO2-loaded pure-SiO2, silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO, medium. The CO2-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO, molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to th…

DiffractionChemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSynchrotron0104 chemical scienceslaw.inventionInorganic ChemistryChemical engineeringStructural stabilitylawThermalCompressibilityMoleculePhysical and Theoretical Chemistry0210 nano-technologyZeolitePorosity
researchProduct

Dense Post-Barite-type Polymorph of PbSO4 Anglesite at High Pressures

2019

Synchrotron X-ray diffraction measurements on lead sulfate have been performed up to 67 GPa using He as pressure transmitting medium. Experiments reveal the existence of a reversible pressure-induced phase transition from the initial Pnma barite-type to the P212121 post-barite-type structure at pressures above 27 GPa. This phase transition involves a volume collapse of 2.4% and requires a considerable pressure overshoot (large pressure range with coexistence of phases) to overcome the large kinetic barrier of the transition. DFT calculations confirm the experimental observations and support the hypothesis that post-barite-type phase is the thermodynamically stable high-pressure structure fo…

DiffractionPhase transition010405 organic chemistryChemistryThermodynamics010402 general chemistry01 natural sciencesSynchrotron0104 chemical scienceslaw.inventionInorganic ChemistrylawAnglesitePhase (matter)CompressibilityPhysical and Theoretical ChemistryAnisotropyTernary operationInorganic Chemistry
researchProduct

The phase diagram of Ti-6Al-4V at high-pressures and high-temperatures.

2020

Abstract We report results from a series of diamond-anvil-cell synchrotron x-ray diffraction and large-volume-press experiments, and calculations, to investigate the phase diagram of commercial polycrystalline high-strength Ti-6Al-4V alloy in pressure–temperature space. Up to ∼30 GPa and 886 K, Ti-6Al-4V is found to be stable in the hexagonal-close-packed, or α phase. The effect of temperature on the volume expansion and compressibility of α–Ti-6Al-4V is modest. The martensitic α → ω (hexagonal) transition occurs at ∼30 GPa, with both phases coexisting until at ∼38–40 GPa the transition to the ω phase is completed. Between 300 K and 844 K the α → ω transition appears to be independent of te…

Materials scienceTriple pointThermodynamics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesOmegaHysteresisMartensitePhase (matter)0103 physical sciencesX-ray crystallographyGeneral Materials ScienceCrystallite010306 general physics0210 nano-technologyPhase diagramJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

The high-pressure, high-temperature phase diagram of cerium

2020

Abstract We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4–oC4–tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1–2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less…

Phase boundaryMaterials scienceTriple pointThermodynamicsDiamondchemistry.chemical_element02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCeriumchemistryPhase (matter)0103 physical sciencesX-ray crystallographyengineeringGeneral Materials ScienceOrthorhombic crystal system010306 general physics0210 nano-technologyPhase diagramJournal of Physics: Condensed Matter
researchProduct

High-pressure/high-temperature phase diagram of zinc

2018

The phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300K up to the melting temperature. The pressure at which c/a reaches root 3 (approximate to 10GPa) is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple pol…

DiffractionPhase transitionMaterials sciencemeltingPOWDER DIFFRACTIONELECTRONIC TOPOLOGICAL TRANSITIONSThermodynamicschemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structureZincDIAMOND-ANVIL CELL01 natural scienceshigh temperatureCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONPhase (matter)Condensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physicsMELTING CURVEPhase diagramCondensed Matter - Materials ScienceAxial ratioSYNCHROTRONab initio calculationszincMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCompression (physics)EQUATION-OF-STATEhigh pressurechemistryx-ray diffractionphase transitionZNMETALS0210 nano-technologyRESISTANCE
researchProduct

Structural and electrical study of the topological insulator SnBi2Te4 at high pressures

2016

We report high-pressure X-ray diffraction and electrical measurements of the topological insulator SnBi2Te4 at room temperature. The pressure dependence of the structural properties of the most stable phase of SnBi2Te4 at ambient conditions (trigonal phase) have been experimentally determined and compared with results of our ab initio calculations. Furthermore, a comparison of SnBi2Te4 with the parent compound Bi2Te3 shows that the central TeSnTe trilayer, which substitutes the Te layer at the center of the TeBiTeBiTe layers of Bi2Te3, plays a minor role in the compression of SnBi2Te4. Similar to Bi2Te3, our resistance measurements and electronic band structure simulations in SnBi2Te4 at hi…

DiffractionElectronic topological transitionMaterials science02 engineering and technology01 natural sciencesAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesMaterials ChemistryElectrical measurementsTopological insulators010306 general physicsElectronic band structureCondensed matter physicsMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureMechanics of MaterialsHigh pressureTopological insulatorFISICA APLICADAX-ray crystallographyTransport properties0210 nano-technology
researchProduct

Structural evolution of CO2 filled pure silica LTA zeolite under high-pressure high-temperature conditions

2017

[EN] The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based X-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alpha-cages and one in the beta-cages, giving a SiO2/CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments…

Materials scienceSiliconGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesChemical reactionNegative thermal expansionPhysics - Chemical PhysicsMaterials ChemistryMoleculeZeoliteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographychemistry0210 nano-technologyStoichiometryPowder diffraction
researchProduct

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

2020

[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…

Phase transitionContext (language use)[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesInorganic Chemistrysymbols.namesakeChemical structureCationsVan der Waalselectronic topologicalPhysical and Theoretical ChemistryCompressibility010405 organic chemistryChemistryCompressionDeformation0104 chemical scienceshigh pressuremetavalent bondingChemical physicsFISICA APLICADAMolecular vibration[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsCondensed Matter::Strongly Correlated ElectronsFermi resonanceSnSb2Te4pressure-induced decompositionvan der Waals forceTernary operationRaman spectroscopyRaman scatteringbonding characterInorganic Chemistry
researchProduct

CCDC 1827597: Experimental Crystal Structure Determination

2018

Related Article: Tomas Marqueño, David Santamaria-Perez, Javier Ruiz-Fuertes, Raquel Chuliá-Jordán, Jose L. Jordá, Fernando Rey, Chris McGuire, Abby Kavner, Simon MacLeod, Dominik Daisenberger, Catalin Popescu, Placida Rodriguez-Hernandez, Alfonso Muñoz|2018|Inorg.Chem.|57|6447|doi:10.1021/acs.inorgchem.8b00523

catena-[octatetracontaoxa-tetracosa-silicon tetrakis(carbon dioxide)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct