0000000000161973
AUTHOR
Agustín De Arriba
Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance
Three samples that correspond to the evolution of optimal catalytic systems for the oxidative dehydrogenation of ethane have been synthesized and compared in terms of catalytic behavior and adsorption properties: (i) vanadium oxide supported on alumina, (ii) Sn-promoted NiO, and (iii) multicomponent MoVTeNbO with the M1 structure. The main difference in catalytic performance lies in the extent of the overoxidation of the ethylene formed, following the order VOx/Al2O3 > NiSnOx > MoVTeNb-M1. Accordingly, the selectivity to ethylene at medium and high ethane conversion follows the order MoVTeNb-M1 > NiSnOx > VOx/Al2O3. These results are confirmed by the relative reaction rates observed for the…
The nickel-support interaction as determining factor of the selectivity to ethylene in the oxidative dehydrogenation of ethane over nickel oxide/alumina catalysts
[EN] Nickel oxides supported on gamma-alumina (Ni-loading from 5 to 30 wt% NiO) have been synthesized and tested in the oxidative dehydrogenation (ODH) of ethane in order to determine the importance of the NiO-support interaction. The best performance was achieved by the catalyst with 15 wt% NiO; higher NiO-loadings lead to the formation of unselective bulk-like NiO and lower Ni-loadings present high proportion of free alumina surface sites. The presence of oxalic acid and/or niobium in the synthesis gel resulted in the formation of NiO particles with similar size, but higher crystallinity and reducibility than the standard 15 wt% NiO catalyst. The obtained results have revealed that, in ad…