Mean ergodicity of weighted composition operators on spaces of holomorphic functions
[EN] Let phi be a self-map of the unit disc D of the complex plane C and let psi be a holomorphic function on D. We investigate the mean ergodicity and power boundedness of the weighted composition operator C-phi,C-psi(f) = psi(f o phi) with symbol phi and multiplier psi on the space H(D). We obtain necessary and sufficient conditions on the symbol phi and on the multiplier psi which characterize when the weighted composition operator is power bounded and (uniformly) mean ergodic. One necessary condition is that the symbol phi has a fixed point in D. If phi is not a rational rotation, the sufficient conditions are related to the modulus of the multiplier on the fixed point of phi. Some of o…
Vector-valued meromorphic functions
A locally complete locally convex space E satisfies that every weakly meromorphic function defined on an open subset of \( \mathbb{C} \) with values in E is meromorphic if and only if E does not contain a countable product of copies of \( \mathbb{C} \). A characterization of locally complete spaces in the spirit of known characterizations of the (metric) convex compactness property is also given.
Composition operators on the Schwartz space
[EN] We study composition operators on the Schwartz space of rapidly decreasing functions. We prove that such a composition operator is never a compact operator and we obtain necessary or sufficient conditions for the range of the composition operator to be closed. These conditions are expressed in terms of multipliers for the Schwartz class and the closed range property of the corresponding operator considered in the space of smooth functions.
Dynamics and spectra of composition operators on the Schwartz space
[EN] In this paper we study the dynamics of the composition operators defined in the Schwartz space of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol ¿ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when ¿ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.
A characterization of the Schur property through the disk algebra
[EN] In this paper we give a new characterization of when a Banach space E has the Schur property in terms of the disk algebra. We prove that E has the Schur property if and only if A(D, E) = A(D,E-w). (C) 2016 Elsevier Inc. All rights reserved.
Spectrum of composition operators on S(R) with polynomial symbols
Abstract We study the spectrum of operators in the Schwartz space of rapidly decreasing functions which associate each function with its composition with a polynomial. In the case where this operator is mean ergodic we prove that its spectrum reduces to {0}, while the spectrum of any non mean ergodic composition operator with a polynomial always contains the closed unit disc except perhaps the origin. We obtain a complete description of the spectrum of the composition operator with a quadratic polynomial or a cubic polynomial with positive leading coefficient.
Mean ergodic composition operators on Banach spaces of holomorphic functions
[EN] Given a symbol cc, i.e., a holomorphic endomorphism of the unit disc, we consider the composition operator C-phi(f) = f circle phi defined on the Banach spaces of holomorphic functions A(D) and H-infinity(D). We obtain different conditions on the symbol phi which characterize when the composition operator is mean ergodic and uniformly mean ergodic in the corresponding spaces. These conditions are related to the asymptotic behavior of the iterates of the symbol. Finally, we deal with some particular case in the setting of weighted Banach spaces of holomorphic functions.