0000000000162042
AUTHOR
M. Carmen Gómez-collado
Mean ergodicity of weighted composition operators on spaces of holomorphic functions
[EN] Let phi be a self-map of the unit disc D of the complex plane C and let psi be a holomorphic function on D. We investigate the mean ergodicity and power boundedness of the weighted composition operator C-phi,C-psi(f) = psi(f o phi) with symbol phi and multiplier psi on the space H(D). We obtain necessary and sufficient conditions on the symbol phi and on the multiplier psi which characterize when the weighted composition operator is power bounded and (uniformly) mean ergodic. One necessary condition is that the symbol phi has a fixed point in D. If phi is not a rational rotation, the sufficient conditions are related to the modulus of the multiplier on the fixed point of phi. Some of o…
Mean ergodic composition operators on Banach spaces of holomorphic functions
[EN] Given a symbol cc, i.e., a holomorphic endomorphism of the unit disc, we consider the composition operator C-phi(f) = f circle phi defined on the Banach spaces of holomorphic functions A(D) and H-infinity(D). We obtain different conditions on the symbol phi which characterize when the composition operator is mean ergodic and uniformly mean ergodic in the corresponding spaces. These conditions are related to the asymptotic behavior of the iterates of the symbol. Finally, we deal with some particular case in the setting of weighted Banach spaces of holomorphic functions.