0000000000162402

AUTHOR

M. Ya. Amusia

Energy scales and magnetoresistance at a quantum critical point

The magnetoresistance (MR) of CeCoIn_5 is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization etc) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the abov…

research product

Common field-induced quantum critical point in high-temperature superconductors and heavy-fermion metals

High-temperature superconductors (HTSC) and heavy-fermion (HF) metals exhibit extraordinary properties. They are so unusual that the traditional Landau paradigm of quasiparticles does not apply. It is widely believed that utterly new concepts are required to describe the underlying physics. There is a fundamental question: how many concepts do we need to describe the above physical mechanisms? This cannot be answered on purely experimental or theoretical grounds. Rather, we have to use both of them. Recently, in HTSC, the new and exciting measurements have been performed, demonstrating a puzzling magnetic field induced transition from non-Fermi liquid to Landau Fermi liquid behavior. We sho…

research product

Quantum critical point in high-temperature superconductors

Recently, in high-T_c superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D 3He, the physical properties of these three classes of substances are similar to each other.

research product

FERMION CONDENSATION, T -LINEAR RESISTIVITY AND PLANCKIAN LIMIT

We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scatteri…

research product

Flat Bands and Salient Experimental Features Supporting the Fermion Condensation Theory of Strongly Correlated Fermi

The physics of strongly correlated Fermi systems, being the mainstream topic for more than half a century, still remains elusive. Recent advancements in experimental techniques permit to collect important data, which, in turn, allow us to make the conclusive statements about the underlying physics of strongly correlated Fermi systems. Such systems are close to a special quantum critical point represented by topological fermion-condensation quantum phase transition which separates normal Fermi liquid and that with a fermion condensate, forming flat bands. Our review paper considers recent exciting experimental observations of universal scattering rate related to linear temperature dependence…

research product

Theoretical and experimental developments in quantum spin liquid in geometrically frustrated magnets: a review

The exotic substances have exotic properties. One class of such substances is geometrically frustrated magnets, where correlated spins reside in the sites of triangular or kagome lattice. In some cases, such magnet would not have long-range magnetic order. Rather, its spins tend to form kind of pairs, called valence bonds. At $$T \rightarrow 0$$ these highly entangled quantum objects condense in the form of a liquid, called quantum spin liquid (QSL). The observation of a gapless QSL in actual materials is of fundamental significance both theoretically and technologically, as it could open a path to creation of topologically protected states for quantum information processing and computation…

research product

New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors

We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…

research product

Heavy fermion spin liquid in herbertsmithite

We analyze recent heat capacity measurements in herbertsmithite $\rm ZnCu_3(OH)_6Cl_2$ single crystal samples subjected to strong magnetic fields. We show that the temperature dependence of specific heat $C_{mag}$ formed by quantum spin liquid at different magnetic fields $B$ resembles the electronic heat capacity $C_{el}$ of the HF metal $\rm YbRh_2Si_2$. We demonstrate that the spinon effective mass $M^*_{mag}\propto C_{mag}/T$ exhibits a scaling behavior like that of $C_{el}/T$. We also show that the recent measurements of $C_{mag}$ are compatible with those obtained on powder samples. These observations allow us to conclude that $\rm ZnCu_3(OH)_6Cl_2$ holds a stable strongly correlated …

research product

Comment on "Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice" (Punk, M., Chowdhury, D. & Sachdev, S. Nature Physics 10, 289-293 (2014))

The authors of a recent paper evidently take the view that the whole of progress made toward a theoretical understanding of the physics of quantum spin liquids (QSL) is associated with models of the kind proposed and applied in their present work. As motivation for this work, they observe that in contrast to existing theoretical models of both gapped and gapless spin liquids, which give rise to sharp dispersive features in the dynamic structure factor, the measured dynamic structure factor reveals an excitation continuum that is remarkably flat as a function of frequency. They go on to assert that "so far, the only theoretical model for a spin liquid state on the kagome lattice which natura…

research product