Location-Free Spectrum Cartography
Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps rel…
Localization-Free Power Cartography
Author's accepted manuscript (postprint). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using measurements of spatially distributed sensors. Applications of these maps include network planning, interference coordination, power con…
Channel Gain Cartography via Mixture of Experts
In order to estimate the channel gain (CG) between the locations of an arbitrary transceiver pair across a geographic area of interest, CG maps can be constructed from spatially distributed sensor measurements. Most approaches to build such spectrum maps are location-based, meaning that the input variable to the estimating function is a pair of spatial locations. The performance of such maps depends critically on the ability of the sensors to determine their positions, which may be drastically impaired if the positioning pilot signals are affected by multi-path channels. An alternative location-free approach was recently proposed for spectrum power maps, where the input variable to the maps…
Machine Learning Tools for Radio Map Estimation in Fading-Impaired Channels
In spectrum cartography, also known as radio map estimation, one constructs maps that provide the value of a given channel metric such as as the received power, power spectral density (PSD), electromagnetic absorption, or channel-gain for every spatial location in the geographic area of interest. The main idea is to deploy sensors and measure the target channel metric at a set of locations and interpolate or extrapolate the measurements. Radio maps nd a myriad of applications in wireless communications such as network planning, interference coordination, power control, spectrum management, resource allocation, handoff optimization, dynamic spectrum access, and cognitive radio. More recently…
Data-Driven Spectrum Cartography via Deep Completion Autoencoders
Spectrum maps, which provide RF spectrum metrics such as power spectral density for every location in a geographic area, find numerous applications in wireless communications such as interference control, spectrum management, resource allocation, and network planning to name a few. Spectrum cartography techniques construct these maps from a collection of measurements collected by spatially distributed sensors. Due to the nature of the propagation of electromagnetic waves, spectrum maps are complicated functions of the spatial coordinates. For this reason, model-free approaches have been preferred. However, all existing schemes rely on some interpolation algorithm unable to learn from data. …
Deep Completion Autoencoders for Radio Map Estimation
Radio maps provide metrics such as power spectral density for every location in a geographic area and find numerous applications such as UAV communications, interference control, spectrum management, resource allocation, and network planning to name a few. Radio maps are constructed from measurements collected by spectrum sensors distributed across space. Since radio maps are complicated functions of the spatial coordinates due to the nature of electromagnetic wave propagation, model-free approaches are strongly motivated. Nevertheless, all existing schemes for radio occupancy map estimation rely on interpolation algorithms unable to learn from experience. In contrast, this paper proposes a…
Aerial Spectrum Surveying: Radio Map Estimation with Autonomous UAVs
Radio maps are emerging as a popular means to endow next-generation wireless communications with situational awareness. In particular, radio maps are expected to play a central role in unmanned aerial vehicle (UAV) communications since they can be used to determine interference or channel gain at a spatial location where a UAV has not been before. Existing methods for radio map estimation utilize measurements collected by sensors whose locations cannot be controlled. In contrast, this paper proposes a scheme in which a UAV collects measurements along a trajectory. This trajectory is designed to obtain accurate estimates of the target radio map in a short time operation. The route planning a…