0000000000162561

AUTHOR

Luis Miguel Lopez Ramos

Location-Free Spectrum Cartography

Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps rel…

research product

Online Topology Identification from Vector Autoregressive Time Series

Causality graphs are routinely estimated in social sciences, natural sciences, and engineering due to their capacity to efficiently represent the spatiotemporal structure of multivariate data sets in a format amenable for human interpretation, forecasting, and anomaly detection. A popular approach to mathematically formalize causality is based on vector autoregressive (VAR) models and constitutes an alternative to the well-known, yet usually intractable, Granger causality. Relying on such a VAR causality notion, this paper develops two algorithms with complementary benefits to track time-varying causality graphs in an online fashion. Their constant complexity per update also renders these a…

research product

Dynamic Regret Analysis for Online Tracking of Time-varying Structural Equation Model Topologies

Identifying dependencies among variables in a complex system is an important problem in network science. Structural equation models (SEM) have been used widely in many fields for topology inference, because they are tractable and incorporate exogenous influences in the model. Topology identification based on static SEM is useful in stationary environments; however, in many applications a time-varying underlying topology is sought. This paper presents an online algorithm to track sparse time-varying topologies in dynamic environments and most importantly, performs a detailed analysis on the performance guarantees. The tracking capability is characterized in terms of a bound on the dynamic re…

research product