0000000000162581

AUTHOR

Adelina Sporea

Structure of amorphous SiO 2 nanoparticles probed through the E′ γ centers

We report an experimental investigation by electron paramagnetic resonance (EPR) spectroscopy on the properties of the E′ γ centers induced by β-ray irradiation in nanoparticles of amorphous SiO 2 (fumed silica) with mean diameters from 7 up to 40 nm. We found that the E′ γ centers are induced in all the fumed silica types in the dose range 4-400 kGy. They are characterized by an EPR line shape similar to that observed in common bulk silica materials independently on the particle diameter. Moreover, the E′ γ center concentration decreases on decreasing of the particle size for each given dose. Our findings are interpreted in terms of a shell-like model of nanoparticles in which it is assume…

research product

<title>Study of color centers in optical fibers to be used for ITER plasma diagnostics</title>

ABSTRACT The paper presents a comparative study, by off-line measurements of the irradiation induced optical attenuation in several large diameter (600 µm) optical fibers subjected to gamma-rays and neutron irradiation. The optical fiber samples fall into two categories: optical fibers with an enhanced UV transmission (high OH content core) and solarization resistant optical fibers. The irradiation conditions were as follows: a) gamma irradiation at a 60 Co source, with a dose rate of 0.33 kGy/h +/- 5%, up to the maximum total irradiation dose of 313 kGy; b) neutron irradiation (mean energy 5.2 MeV) using a deuteron beam (13 MeV) and a thick beryllium target, for a total fluence of 6x10 12 …

research product

Evaluation of the UV Optical Transmission Degradation of Gamma-ray Irradiated Optical Fibers

This paper highlights our recent results on the investigation of the transmission attenuation in the UV spectral range induced by gamma-ray irradiation of optical fibers, and the comparison with results obtained by electron paramagnetic resonance (EPR) and photoluminescence measurements.

research product

Alpha and deuteron irradiation effects on silica nanoparticles

We present an experimental investigation focused on the effects of alpha and deuteron irradiation on different silica nanoparticles. The study has been devoted also to characterize the induced point defects and the eventual structural modifications to evaluate the effects of the different irradiation source in comparison with the bulk materials. After irradiation up to about 10^16 ions cm^-2, we performed electron paramagnetic resonance (EPR), photoluminescence (PL), infrared (IR) absorption, Raman, and atomic force microscopy (AFM) measurements. We found that the two types of irradiation qualitatively induce comparable effects. Furthermore, irradiation generates the socalled twofold coordi…

research product