0000000000164308
AUTHOR
Daniela Paesano
Multi-valued $$F$$ F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation
We study the existence of fixed points for multi-valued mappings that satisfy certain generalized contractive conditions in the setting of 0-complete partial metric spaces. We apply our results to the solution of a Volterra type integral equation in ordered 0-complete partial metric spaces.
Approximation of fixed points of multifunctions in partial metric spaces
Recently, Reich and Zaslavski [S. Reich and A.J. Zaslavski, Convergence of Inexact Iterative Schemes for Nonexpansive Set-Valued Mappings, Fixed Point Theory Appl. 2010 (2010), Article ID 518243, 10pages] have studied a new inexact iterative scheme for fixed points ofcontractive multifunctions. In this paper, using the partial Hausdorffmetric introduced by Aydi et al., we prove an analogous to a resultof Reich and Zaslavski for contractive multifunctions in the setting ofpartial metric spaces. An example is given to illustrate our result. 
Common Fixed Points in a Partially Ordered Partial Metric Space
In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces
Abstract Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. In this paper we prove an analogous fixed point result for a self-mapping on a partial metric space or on a partially ordered metric space. Our results on partially ordered metric spaces generalize and extend some recent results of Ran and Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004…
Fixed points and completeness on partial metric spaces
Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…