0000000000164451
AUTHOR
Matthias Gabriel
Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene
Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the m…
Modified Silk with Cell-Adhesive and Non-Thrombogenic Properties as a Tissue Engineering Substrate
IntroductionReplacement of damaged tissue is nowadays an aim of tissue engineering. This technique involves the use of porous or fibrous structures – the so-called scaffolds – that support the colonization with the desired cell type and which are degraded after fulfilling their temporary supporting function. Basic requirements for the prevailing materials used in this field are nontoxicity, low immunogenicity and cell-adhesiveness. Furthermore blood-contacting devices should exhibit low thrombogenicity.The biopolymer silk, mainly consisiting of the protein silk fibroin, matches some of these criteria but bare silk does not facilitate cellular adhesion and growth and unfortunately the materi…
The covalently immobilized antimicrobial peptide LL37 acts as a VEGF mimic and stimulates endothelial cell proliferation
The chemical coupling of growth factors to solid substrates are discussed as an alternative to delivery systems. Utilizing entire proteins for this application is hampered by safety and stability considerations. Instead, growth factor mimicking peptides are of great interest for biomedical applications, such as tissue engineering, due to their purity and stability. The human cathelicidin derived antimicrobial peptide LL37, beside its microbicidal activity, was shown to stimulate endothelial cell growth when used in a soluble form. Here, in a novel approach, spacer mediated immobilization, but not direct conjugation of LL37, to a gold substrate was shown to result in a pronounced mitogenic e…
Inactivation of an Enveloped Virus by Immobilized Antimicrobial Peptides.
Infections caused by viruses are difficult to treat due to their life cycle, which depends on the replication machinery of the respective host cells. Commonly used antiviral strategies are based upon the application of, e.g., entry inhibitors and other compounds that interfere with virus replication. Besides possible side effects, the rapid occurrence of viral resistance poses a great challenge. Antimicrobial peptides (AMPs), as a component of the innate immunity, are able to kill bacteria and fungi and, in addition, may inactivate enveloped viruses. Many AMPs exert their biological function by impairing microbial and viral membranes. As a result, membrane integrity is lost, leading to bact…
Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide.
There is increasing evidence for biological functions of human C-peptide. Recently, we have described that proinsulin C-peptide increases nutritive capillary blood flow and restores erythrocyte deformability in type 1 diabetic patients, whereas it has no such effect in non-diabetic subjects. The aim of the current study was to elucidate cellular mechanisms of this vasodilator effect in vitro by measuring the nitric oxide (NO)-mediated increase of cGMP production in a RFL-6 reporter cell assay and by demonstrating endothelial calcium influx with the Fluo-3 technique. C-peptide increased the release of NO from endothelial NO synthase (eNOS) in bovine aortic endothelial cells in a concentratio…
Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach
Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial …
Derivatization of Plasma Polymerized Thin Films and Attachment of Biomolecules to Influence HUVEC-Cell Adhesion
Cell Adhesive and Antifouling Polyvinyl Chloride Surfaces Via Wet Chemical Modification
Polyvinyl chloride (PVC) is one of the most frequently used polymers for the manufacturing of medical devices. Limitations for its usage are based upon unfavorable surface properties of the polymer including its hydrophobicity and lack of functionalities in order to increase its versatility. To address this issue, wet chemical modification of PVC was performed through surface amination using the bifunctional compound ethylene diamine. The reaction was conducted in order to achieve maximum surface amination while leaving the bulk material unaffected. The initial activation step was characterized by means of various methods including contact angle measurements, colorimetric amine quantificati…
Covalent RGD modification of the inner pore surface of polycaprolactone scaffolds
Scaffold production for tissue engineering was demonstrated by means of a hot compression molding technique and subsequent particulate leaching. The utilization of spherical salt particles as the pore-forming agent ensured complete interconnectivity of the porous structure. This method obviated the use of potentially toxic organic solvents. To overcome the inherent non-cell-adhesive properties of the hydrophobic polymer polycaprolactone (PCL) surface activation with a diamine was performed, followed by the covalent immobilization of the adhesion-promoting RGD-peptide. The wet-chemical approach was performed to guarantee modification throughout the entire scaffold structure. The treatment wa…
Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion
Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal perfo…