0000000000164488

AUTHOR

D. Contorno

showing 7 related works from this author

Forming of aluminum foam sandwich panels: Numerical simulations and experimental tests

2006

Abstract The forming of the completed aluminium foam sandwich (AFS) panels would determine an improvement in the manufacturing of parts and panels. In this paper the authors have investigated the formability of AFS through experiments and numerical simulations. As far as the former are concerned, commercially prepared panels have been considered and bending and stamping processes have been taken into account. In addition, FEM analyses have been developed, utilizing a porous material model following the evolution of the material density throughout the forming processes.

Materials scienceFoams AFS FEMBending (metalworking)business.industryMetals and AlloysForming processesMetal foamStructural engineeringStampingIndustrial and Manufacturing EngineeringFinite element methodComputer Science ApplicationsAluminium foam sandwichModeling and SimulationCeramics and CompositesFormabilityComposite materialbusinessSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSandwich-structured compositeJournal of Materials Processing Technology
researchProduct

Fundamental Investigations on Friction Stir Knead Welding

2007

researchProduct

Wear Analysis During Friction Stir Processing of A359+20%SiC MMC

2009

Metal Matrix Composites (MMC) are very interesting materials for applications in the automotive and aerospace fields, since they combine the lightness of Aluminium with the strength of the ceramic reinforcement. These materials are very difficult to join and conventional welding techniques are not applicable, whereas solid-state welding techniques, like Friction Stir Welding (FSW), could be a solution. However very hard tool materials will need to be chosen in order to overcome the problem of heavy abrasive tool wear. In this work the wear behaviour of coated and uncoated steel tools has been investigated in the Friction Stir Processing of extruded bars in A359 + 20%SiC. AISI 1040 steel was…

Materials scienceFriction stir processingFriction Stir Weldingchemistry.chemical_elementWeldinglaw.inventionWearAluminiumlawMultilayer coated toolFriction stir weldingGeneral Materials ScienceCeramicTool wearComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMMCMechanical EngineeringMetallurgyAbrasiveTribologyFSW Tool wearchemistryMechanics of Materialsvisual_artvisual_art.visual_art_medium
researchProduct

Microstructural Changes Determining Joint Strength in Friction Stir Welding of Aluminium Alloys

2005

In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.

Friction Stir Welding
researchProduct

Friction Stir Knead Welding of steel aluminium butt joints

2008

To develop steel aluminium-tailored hybrids in a butt joint for sheets in a thickness of about 1 mm conventional Friction Stir Welding is not feasible due to a high distortion of the welded specimen. Contrary to Friction Stir Welding the tool used for Friction Stir Knead Welding has no pin wherefore higher welding speeds can be realised. Due to the fact that this is a newer process, applied for patent in 2005, the cut contours of the edges and their variations have to be optimised by numerical analysis to transfer a maximum of load in order to improve the formability. The examined materials in this paper are steel DC04, as well as the aluminium alloys AA5182 and AA6016 in sheet thicknesses …

Heat-affected zonePlastic weldingFiller metalMaterials scienceMechanical EngineeringMetallurgyLaser beam weldingWeldingFSW Solid State WeldingElectric resistance weldingIndustrial and Manufacturing Engineeringlaw.inventionlawFriction stir weldingFriction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneInternational Journal of Machine Tools and Manufacture
researchProduct

Tecniche di giunzione per la realizzazione di giunti misti acciaio-alluminio

2006

researchProduct

Microstructural Changes Determining Joint Strength in Friction Stir Welding of Aluminium Alloys

2005

In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.

Materials scienceMetallurgyGeneral Engineeringchemistry.chemical_elementWeldingMicrostructurelaw.inventionchemistryAluminiumlawButt jointFriction stir weldingComposite materialJoint (geology)Advanced Materials Research
researchProduct