0000000000164517

AUTHOR

Michael Andres

showing 1 related works from this author

The role of left supplementary motor area in grip force scaling

2013

Skilled tool use and object manipulation critically relies on the ability to scale anticipatorily the grip force (GF) in relation to object dynamics. This predictive behaviour entails that the nervous system is able to store, and then select, the appropriate internal representation of common object dynamics, allowing GF to be applied in parallel with the arm motor commands. Although psychophysical studies have provided strong evidence supporting the existence of internal representations of object dynamics, known as "internal models", their neural correlates are still debated. Because functional neuroimaging studies have repeatedly designated the supplementary motor area (SMA) as a possible …

MaleTRANSCRANIAL MAGNETIC STIMULATIONAnatomy and PhysiologyBrain activity and meditationmedicine.medical_treatmentSocial SciencesBRAIN ACTIVITYSocial and Behavioral SciencesFunctional LateralityACTIVATIONBehavioral NeuroscienceTask Performance and AnalysisHuman PerformancePsychologyMotor skillPhysicsMultidisciplinaryHand StrengthSupplementary motor areaQMotor CortexRPRECISION GRIPSMA*Transcranial Magnetic Stimulationmedicine.anatomical_structureMotor SkillsPREMOTOR AREASFMRIMedicineSensory PerceptionOBJECTSResearch ArticleMotor cortexAdultCognitive NeuroscienceScienceNeurophysiologyNeurological SystemLateralization of brain functionNeuropsychologyHand strengthPsychophysicsmedicineLearningHumansFRONTAL-LOBEBiologyMotor SystemsBehaviorMOVEMENTSCognitive PsychologyEvoked Potentials MotorHandTranscranial magnetic stimulationINTERNAL-MODELSNeuroscienceNeuroscience
researchProduct