0000000000164820

AUTHOR

Ian J. Thompson

showing 4 related works from this author

Three-body correlations in electromagnetic dissociation of Borromean nuclei: The 6He case

2005

20 pages, 2 tables, 9 figures, 1 appendix.-- PACS nrs.: 25.60.-t; 27.20.+n; 25.70.De; 25.75.Gz.-- Printed version published Sep 5, 2005.

PhysicsNuclear and High Energy PhysicsParticle correlationsCoulomb excitationCoulomb excitationDissociation (chemistry)Coincidence[PACS] Reactions induced by unstable nucleiAmplitude6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Fragmentation (mass spectrometry)[PACS] Particle correlations and fluctuationsNeutronHe-6[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Atomic physicsSeries expansionGround stateUnstable nucleiNuclear Physics A
researchProduct

A study of coupled-reaction channel effects in the36S +37Cl system, hybridization between single particle orbits

1996

Elastic and inelastic scattering as well as transfer transitions involving a valence proton in thesd- andfp- shell orbits are studied in the interaction of37Cl +36S at ECM=50 MeV. Experimental angular distributions of single particle states of37Cl (elastic and inelastic transfer) are presented with a CRC analysis. In the CRC calculations the effects of inelastic and transfer couplings are studied using known spectroscopic information. In the CRC analysis six single particle bound states and the collective 2+ excitation of36S are included in the coupling scheme. Higher order coupling effects are found to be important. A distinct effect, the mixing of single particle states (of different pari…

PhysicsCouplingNuclear and High Energy PhysicsValence (chemistry)Bound stateNuclear fusionParity (physics)Inelastic scatteringAtomic physicsNucleonExcitationZeitschrift für Physik A Hadrons and Nuclei
researchProduct

Computational nuclear quantum many-body problem: The UNEDF project

2013

The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF scien…

Energy density functionalNuclear Theoryta114Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyComputerApplications_COMPUTERSINOTHERSYSTEMSSupercomputerNuclear Theory (nucl-th)Many-body problemRange (mathematics)Hardware and ArchitectureSystems engineeringStatistical physicsUncertainty quantificationQuantumNuclear theoryComputer Physics Communications
researchProduct

White paper: from bound states to the continuum

2020

This white paper reports on the discussions of the 2018 Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory’. One of the biggest and most important frontiers in nuclear theory today is to construct better and stronger bridges between bound state calculations and calculations in the continuum, especially scattering and reaction theory, as well as teasing out the influence of the continuum on states near threshold. This is particularly challenging as many-body structure calculations typically use a bound state basis, while reaction calculations more commonly utili…

Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Structure (category theory)nucleus: structure functionFew-body systems[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMany-body problemTheoretical physicsFew-body systems0103 physical sciencesBound stateReactionsNuclear structure010306 general physicsPhysicsBasis (linear algebra)010308 nuclear & particles physicsContinuum (topology)ScatteringscatteringNuclear structurePhysique atomique et nucléairebound statefew-body problemmany-body problem
researchProduct