0000000000165108

AUTHOR

Szymon Dolecki

showing 17 related works from this author

Weak regularity and consecutive topologizations and regularizations of pretopologies

2009

Abstract L. Foged proved that a weakly regular topology on a countable set is regular. In terms of convergence theory, this means that the topological reflection Tξ of a regular pretopology ξ on a countable set is regular. It is proved that this still holds if ξ is a regular σ -compact pretopology. On the other hand, it is proved that for each n ω there is a (regular) pretopology ρ (on a set of cardinality c ) such that ( RT ) k ρ > ( RT ) n ρ for each k n and ( RT ) n ρ is a Hausdorff compact topology, where R is the reflector to regular pretopologies. It is also shown that there exists a regular pretopology of Hausdorff RT -order ⩾ ω 0 . Moreover, all these pretopologies have the property…

Discrete mathematicsPretopologyHausdorff spaceMathematics::General TopologyRegularization (mathematics)CombinatoricsReflection (mathematics)CardinalityMathematics::Category TheoryTopologizationRegularizationOrder (group theory)Countable setGeometry and TopologyMathematicsWeak baseMAD familyTopology and its Applications
researchProduct

Introduction to General Duality Theory for Multi-Objective Optimization

1992

This is intended as a comprehensive introduction to the duality theory for vector optimization recently developed by C. Malivert and the present author [3]. It refers to arbitrarily given classes of mappings (dual elements) and extends the general duality theory proposed for scalar optimization by E. Balder, S. Kurcyusz and the present author [1] and P. Lindberg.

AlgebraMathematical optimizationVector optimizationStrong dualityWolfe dualityDuality (optimization)Multi-objective optimizationMathematicsScalar optimization
researchProduct

The forgotten mathematical legacy of Peano

2019

International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.

PeanoPeano's axioms of arithmeticPeano's counterexamplesWeierstrass maximum theoremabstract measuresGeneral MathematicsClosure (topology)tangencyinterioranti-distributive familiesfoundationdefinitions by abstractionlinear differential equationsaxiom of choiceLogical conjunctionPeano axiomsproofFormal languageAxiom of choiceMSC: Primary 01A55 01A6003-03 26-03 28-03 34-03 54-03; Secondary15A75 26A03 26A2426B25 26B05 28A1228A15 28A75.affine exterior algebra[MATH]Mathematics [math]reduction formulaeMathematicsnonlinear differential equationsoptimality conditionsdifferentiation of measuressweeping-tangent theoremPeano's axioms of geometryPeano's filling curvereduction of mathematics to setssurface areaclosuremean value theoremDirichlet functionNonlinear differential equationssubtangentsEpistemologymeasure theoryplanar measurelower and upper limits of setsdistributive familiescompactnessmathematical definitions1886 existence theoremdifferentiabilityDissertationes Mathematicae
researchProduct

Precise bounds for the sequential order of products of some Fréchet topologies

1998

Abstract The sequential order of a topological space is the least ordinal for which the corresponding iteration of the sequential closure is idempotent. Lower estimates for the sequential order of the product of two regular Frechet topologies and upper estimates for the sequential order of the product of two subtransverse topologies are given in terms of their fascicularity and sagittality. It is shown that for every countable ordinal α, there exists a Lasnev topology such that the sequential order of its square is equal to α.

Discrete mathematicsClosure (topology)Topological spaceSequential spaceSquare (algebra)CombinatoricsProduct (mathematics)IdempotenceOrder (group theory)Countable setGeometry and TopologySequential orderFréchet (Fréchet-Urysohn) topologyProductMathematicsTopology and its Applications
researchProduct

Erratum to “Irregularity” [Topology Appl. 154 (8) (2007) 1565–1580]

2012

[2, Proposition 4.4] states that each regular pretopology is topologically regular. Professor F. Mynard (Georgia Southern University) advised the authors that he was not convinced by the proof of that proposition, which enabled us to realize the proposition is wrong, as the example below shows. Recall that (e.g., [2]) a pretopology ξ on a set X is called regular if Vξ (x)⊂ adh ξ Vξ (x) (respectively, topologically regular if Vξ (x)⊂ cl ξ Vξ (x)) for every x ∈ X . As a consequence, in the sequel of [2], regular should be read topologically regular in a few instances, in particular in [2, Theorem 4.6]. [2, Proposition 4.4] is also quoted in [3], where it is used in some reformulations of clas…

RegularityReflection (mathematics)PretopologyExistential quantificationConvergence spacePropositionContext (language use)Geometry and TopologyTopologyTopology (chemistry)MathematicsTopology and its Applications
researchProduct

Completeness number of families of subsets of convergence spaces

2016

International audience; Compactoid and compact families generalize both convergent filters and compact sets. This concept turned out to be useful in various quests, like Scott topologies, triquotient maps and extensions of the Choquet active boundary theorem.The completeness number of a family in a convergence space is the least cardinality of collections of covers for which the family becomes complete. 0-completeness amounts to compactness, finite completeness to relative local compactness and countable completeness to Čech completeness. Countably conditional countable completeness amounts to pseudocompleteness of Oxtoby. Conversely, each completeness class of families can be represented a…

Discrete mathematics[ MATH ] Mathematics [math]CompletenessClass (set theory)Complete partial orderCompactness010102 general mathematicsBoundary (topology)Characterization (mathematics)01 natural sciences010101 applied mathematicsConvergence theoryCompact spaceCardinalityCompleteness (order theory)Countable setGeometry and Topology0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct

Cascades and multifilters

2000

Abstract Cascades (trees every element of which is a filter on the set of its successors), and multifilters, maps from cascades, are introduced. Multisequences constitute a special case of multifilters. Applications to convergence and to topology are indicated.

Set (abstract data type)Operations researchConvergence (routing)MultifilterGeometry and TopologyFilter (mathematics)TopologyMultisequenceMathematicsTopology and its Applications
researchProduct

Irregularity

2007

AbstractRegular and irregular pretopologies are studied. In particular, for every ordinal there exists a topology such that the series of its partial (pretopological) regularizations has length of that ordinal. Regularity and topologicity of special pretopologies on some trees can be characterized in terms of sets of intervals of natural numbers, which reduces studied problems to combinatorics.

Mathematics::Category TheoryMathematics::General TopologyGeometry and TopologyTopology and its Applications
researchProduct

Group topologies coarser than the Isbell topology

2011

Abstract The Isbell, compact-open and point-open topologies on the set C ( X , R ) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α ( X ) of compact families of open subsets of a topological space X . Those α ( X ) for which addition is jointly continuous at the zero function in C α ( X , R ) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α ( X ) for which C α ( X , R ) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, t…

54C35 54C40 54A10Function spaceGroup (mathematics)HyperspaceGeneral Topology (math.GN)Isbell topologyInfraconsonanceTopological spaceFunction spaceTopologyTopological vector spaceTopological groupFunctional Analysis (math.FA)Mathematics - Functional AnalysisHyperspaceFOS: MathematicsTopological groupGeometry and TopologyConsonanceTopology (chemistry)Vector spaceMathematicsMathematics - General Topology
researchProduct

Some old and new results on lower semicontinuity of minimal points

2000

Discrete mathematicsDual cone and polar coneApplied MathematicsAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

When a convergence of filters is measure-theoretic

2022

Abstract Convergence almost everywhere cannot be induced by a topology, and if measure is finite, it coincides with almost uniform convergence and is finer than convergence in measure, which is induced by a metrizable topology. Measures are assumed to be finite. It is proved that convergence in measure is the Urysohn modification of convergence almost everywhere, which is pseudotopological. Extensions of these convergences from sequences to arbitrary filters are discussed, and a concept of measure-theoretic convergence is introduced. A natural extension of convergence almost everywhere is neither measure-theoretic, nor finer than a natural extension of convergence in measure. A straightforw…

Convergence in measureMetrization theoremUniform convergenceConvergence (routing)Applied mathematicsAlmost everywhereTopology (electrical circuits)Geometry and TopologyExtension (predicate logic)Measure (mathematics)MathematicsTopology and its Applications
researchProduct

Convergence-theoretic mechanisms behind product theorems

2000

Abstract Commutation of the topologizer with products, quotientness of product maps, preservation of some properties by products, topologicity of continuous convergence, continuity of complete lattices are facets of the same quest. A new method of multifilters is used to establish (in terms of core-contour-compactness) sufficient and necessary conditions for these properties in the framework of general convergences. The relativized Antoine reflector plays here an important role. Several classical results (of Whitehead, Michael, Boehme, Cohen, Day and Kelly, Hofmann and Lawson, Schwarz and Weck, Kent and Richardson, and others) are extended or refined.

AlgebraQuotient mapContinuous convergencePure mathematicsProduct (mathematics)Convergence (routing)Sequential spaceGeometry and TopologySequential spaceProduct mapMathematicsTopology and its Applications
researchProduct

Convergence-theoretic characterizations of compactness

2002

AbstractFundamental variants of compactness are characterized in terms of concretely reflective convergence subcategories: topologies, pretopologies, paratopologies, hypotopologies and pseudotopologies. Hyperquotient maps (perfect, quasi-perfect, adherent and closed) and quotient maps (quotient, hereditarily quotient, countably biquotient, biquotient, and almost open) are characterized in terms of various degrees of compactness of their fiber relations, and of sundry relaxations of inverse continuity.

Discrete mathematicsCompactnessFiber (mathematics)PretopologyInverseMathematics::General TopologyPseudotopologyPerfect mapQuotient mapPerfect mapCompact spaceConvergence (routing)Geometry and TopologyConvergenceEquivalence classQuotientMathematicsTopology and its Applications
researchProduct

General duality in vector optimization

1993

Vector minimization of a relation F valued in an ordered vector space under a constraint A consists in finding x 0 ∊ A w,0 ∊ Fx$0 such that w,0 is minimal in FA. To a family of vector minimization problemsminimize , one associates a Lagrange relation where ξ belongs to an arbitrary class Ξ of mappings, the main purpose being to recover solutions of the original problem from the vector minimization of the Lagrange relation for an appropriate ξ. This ξ turns out to be a solution of a dual vector maximization problem. Characterizations of exact and approximate duality in terms of vector (generalized with respect to Ξ) convexity and subdifferentiability are given. They extend the theory existin…

Discrete mathematicsControl and OptimizationVector operatorDual spaceApplied MathematicsDuality (optimization)Management Science and Operations ResearchVector optimizationUnit vectorOrdered vector spaceApplied mathematicsVector potentialMathematicsNormed vector spaceOptimization
researchProduct

Convergence foundations of topology

2016

International audience

[ MATH ] Mathematics [math][MATH.MATH-GN]Mathematics [math]/General Topology [math.GN][MATH] Mathematics [math][MATH]Mathematics [math][ MATH.MATH-GN ] Mathematics [math]/General Topology [math.GN]ComputingMilieux_MISCELLANEOUS[MATH.MATH-GN] Mathematics [math]/General Topology [math.GN]
researchProduct

Polarities and Generalized Extremal Convolutions

2016

International audience;

[ MATH ] Mathematics [math]ConvexityCyrtologies[MATH] Mathematics [math][MATH]Mathematics [math]ConvergencesComputingMilieux_MISCELLANEOUS
researchProduct

Multiple facets of inverse continuity

2021

International audience; Inversion of various inclusions that characterize continuity in topological spaces results in numerous variants of quotient and perfect maps. In the framework of convergences, the said inclusions are no longer equivalent, and each of them characterizes continuity in a different concretely reflective subcategory of convergences. On the other hand, it turns out that the mentioned variants of quotient and perfect maps are quotient and perfect maps with respect to these subcategories. This perspective enables use of convergence-theoretic tools in quests related to quotient and perfect maps, considerably simplifying the traditional approach. Similar techniques would be un…

54A20 54C10General Topology (math.GN)FOS: Mathematics[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics - General Topology
researchProduct