0000000000165254

AUTHOR

Jörg Langowski

0000-0001-8600-0666

Protein diffusion in mammalian cell cytoplasm.

We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribut…

research product

Parvovirus induced alterations in nuclear architecture and dynamics.

The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after ph…

research product

Modeling of Particle Number Fluctuations in Entire Cells

In a recent study we developed a method to model protein diffusion in cells [1], where special attention was given to generating from image data of the measured cell a realistic digital model cell in which protein dynamics were simulated. The method was shown to be well suited for modeling non-equilibrium situations that arise, e.g., in photobleaching experiments, and to be capable of producing more detailed information about protein motion than traditional modeling.Another experimental way to assess protein dynamics is to study fluctuations in the local protein number, as it is done, e.g., in fluorescence correlation spectroscopy (FCS), or in similar measurements that apply single-plane il…

research product