0000000000165586

AUTHOR

Chris Sosa

showing 2 related works from this author

Directed Assembly of Soft Colloids through Rapid Solvent Exchange

2015

We studied the directed assembly of soft nanoparticles through rapid micromixing of polymers in solution with a nonsolvent. Both experiments and computer simulations were performed to elucidate the underlying physics and to investigate the role of various process parameters. In particular, we discovered that no external stabilizing agents or charged end groups are required to keep the colloids separated from each other when water is used as the nonsolvent. Furthermore, the size of the nanoparticles can be reliably tuned through the mixing rate and the ratio between polymer solution and nonsolvent. Our results demonstrate that this mechanism is highly promising for the mass fabrication of un…

FabricationMaterials scienceMixing (process engineering)General Physics and AstronomyNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesColloidComputer SimulationGeneral Materials ScienceColloidsParticle Sizechemistry.chemical_classificationGeneral EngineeringWaterPolymer021001 nanoscience & nanotechnology0104 chemical sciencesMicromixingSolutionsSolventKineticsModels ChemicalchemistryColloidal particleNanoparticlesPolystyrenesThermodynamics0210 nano-technologyACS Nano
researchProduct

Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.

2018

Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morph…

Materials sciencePrecipitation (chemistry)digestive oral and skin physiologyeducationGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanomaterialsSolventColloidChemical engineeringCopolymerParticleGeneral Materials ScienceLamellar structure0210 nano-technologyBiosensorACS nano
researchProduct