0000000000165623

AUTHOR

Tancredi Botto

Lowest- Q2 measurement of the γp → Δ reaction: Probing the pionic contribution

To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reaso…

research product

Investigation of the conjectured nucleon deformation at low momentum transfer.

We report new precise H$(e,e^\prime p)\pi^0$ measurements at the $\Delta(1232)$ resonance at $Q^2= 0.127$ (GeV/c)$^2$ using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude ($E2$) of the $\gamma^* N\to\Delta$ transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios $EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})%$ and $CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})%$ and for $M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+})$. They give credence to the conjecture of deformation in hadronic systems favoring, at low $Q^2$, the domin…

research product

Determination of quadrupole strengths in the γ∗p→Δ(1232) transition at Q2=0.20(GeV/c)2

Abstract We report new precise p ( e → , e ′ p ) π 0 measurements at the peak of the Δ + ( 1232 ) resonance at Q 2 = 0.20 ( GeV / c ) 2 performed at the Mainz Microtron (MAMI). The new data are sensitive to both the electric (E2) and the Coulomb (C2) quadrupole amplitudes of the γ ∗ N → Δ transition. They yield precise quadrupole to dipole amplitude ratios: CMR = ( − 5.09 ± 0.28 stat + sys ± 0.30 model ) % and EMR = ( − 1.96 ± 0.68 stat + sys ± 0.41 model ) % for M 1 + 3 / 2 = ( 39.57 ± 0.75 stat + sys ± 0.40 model ) ( 10 −3 / m π + ) . The new results are in disagreement with Constituent Quark Model predictions and in qualitative agreement with models that account for mesonic contributions…

research product

Charge Form Factor of the Neutron at Low Momentum Transfer from theH→2(e→,e′n)H1Reaction

We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio ${G}_{E}^{n}/{G}_{M}^{n}$ was extracted from the beam-target vector asymmetry ${A}_{\mathrm{ed}}^{V}$ at four-momentum transfers ${Q}^{2}=0.14$, 0.20, 0.29, and $0.42\text{ }\text{ }(\mathrm{GeV}/c{)}^{2}$.

research product

Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at LowQ2Using the Virtual-Compton-Scattering Reaction

Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the MIT-Bates out-of-plane scattering facility are presented. The VCS response functions ${P}_{LL}\ensuremath{-}{P}_{TT}/\phantom{{P}_{TT}\ensuremath{\varepsilon}}\ensuremath{\varepsilon}$ and ${P}_{LT}$ have been measured at ${Q}^{2}=0.057\phantom{\rule{0.28em}{0ex}}{\mathrm{GeV}}^{2}/{c}^{2}$. The generalized electric and magnetic polarizabilities, $\ensuremath{\alpha}({Q}^{2})$ and $\ensuremath{\beta}({Q}^{2})$, and the mean-square electric polarizability radius$\ensuremath{\langle}{r}_{\ensuremath{\alpha}}^{2}\ensuremath{\rangle}$ are obtained from a dispersion analysis of the data. The resu…

research product

Measurement of the partial cross sectionsσTT,σLT, and(σT+ɛσL)of the1H(e,e′π+)nreaction in theΔ(1232)resonance

We report precision {sup 1}H(e, e{sup '{pi}+})n measurements in the {Delta}(1232) resonance at Q{sup 2}=0.127(GeV/c){sup 2} obtained at the MIT-Bates out-of-plane scattering facility. These are the lowest, but nonzero, Q{sup 2} measurements in the {pi}{sup +} channel. The data offer tests of the theoretical calculations, particularly of the background amplitude contributions. The chiral effective field theory and Sato-Lee model calculations are not in agreement with this experiment.

research product

Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/$c$ with a tensor polarized $^2$H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.

research product

The BLAST experiment

The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, inter…

research product

Electron elastic scattering off a Tensor-polarized Deuterium Internal Target

The tensor analyzing power Γ20 in elastic electron-deuteron scattering has been measured in the four momentum transfer region between 1.4 and 3.2 fm~l using the Internal Target Facility at NIKHEF. Tensor-polarized deuterium is produced in an Atomic Beam Source and injected into a storage cell. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors.

research product