0000000000165658

AUTHOR

Brigitte Bartsch

Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on rac proteins

Abstract We have shown recently that the azathioprine metabolite 6-Thio-GTP causes immunosuppression by blockade of GTPase activation in T lymphocytes. In the present study, we describe a new molecular mechanism by which 6-Thio-GTP blocks GTPase activation. Although 6-Thio-GTP could bind to various small GTPases, it specifically blocked activation of Rac1 and Rac2 but not of closely related Rho family members such as Cdc42 and RhoA in primary T cells upon stimulation with αCD28 or fibronectin. Binding of 6-Thio-GTP to Rac1 did not suppress Rac effector coupling directly but blocked Vav1 exchange activity upon 6-Thio-GTP hydrolysis, suggesting that 6-Thio-GTP loading leads to accumulation of…

research product

Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis

Abstract The transcription factor STAT4 mediates signals of various proinflammatory cytokines, such as IL-12, IL-15, and IL-23, that initiate and stabilize Th1 cytokine production. Although Th1 cytokine production has been suggested to play a major pathogenic role in rheumatoid arthritis, the role of STAT4 in this disease is poorly understood. In this study, we demonstrate a key functional role of STAT4 in murine collagen-induced arthritis (CIA). In initial studies we found that STAT4 expression is strongly induced in CD4+ T cells and to a lesser extent in CD11b+ APCs during CIA. To analyze the role of STAT4 for arthritis manifestation, we next investigated the outcome of interfering with S…

research product

A genetic basis for IFN-gamma production and T-bet expression in humans.

Abstract Th1 and Th2 cytokines secreted by polarized effector T cells play a pivotal role in the development of autoimmune and allergic diseases. However, the genetic basis of cytokine production by T lymphocytes in humans is poorly understood. In this study, we investigated the genetic contribution to cytokine production and regulation of T cell-specific transcription factors in a prospective twin study. We found a substantial genetic contribution to the production of Th1 cytokines such as IFN-γ and TNF-α with heritabilities of 0.85 (95% confidence intervals, 0.74–0.95) and 0.72 (0.50–0.93), respectively, whereas no genetic influence on production of the Th2 signature cytokine IL-4 was obs…

research product

Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14⁺ macrophages.

Background & Aims The anti–tumor necrosis factor (TNF) antibodies infliximab, adalimumab, and certolizumab pegol have proven clinical efficacy in Crohn's disease. Here, we assessed the effects of anti-TNF antibodies on apoptosis in inflammatory bowel disease (IBD). Methods CD14 + macrophages and CD4 + T cells were isolated from peripheral blood and lamina propria mononuclear cells from patients with IBD and control patients. Cell surface markers and apoptosis were assessed by immunohistology and fluorescence-activated cell sorting techniques. Results Lamina propria CD14 + macrophages showed significantly more frequent and higher membrane-bound TNF (mTNF) expression than CD4 + T cells in IBD…

research product

Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo

The pro-inflammatory cytokine interleukin (IL)-6 (refs. 1-5) can bind to cells lacking the IL-6 receptor (IL-6R) when it forms a complex with the soluble IL-6R (sIL-6R) (trans signaling). Here, we have assessed the contribution of this system to the increased resistance of mucosal T cells against apoptosis in Crohn disease (CD), a chronic inflammatory disease of the gastrointestinal tract. A neutralizing antibody against IL-6R suppressed established experimental colitis in various animal models of CD mediated by type 1 T-helper cells, by inducing apoptosis of lamina propria T cells. Similarly, specific neutralization of sIL-6R in vivo by a newly designed gp130-Fc fusion protein caused suppr…

research product

CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes

Azathioprine and its metabolite 6-mercaptopurine (6-MP) are immunosuppressive drugs that are used in organ transplantation and autoimmune and chronic inflammatory diseases such as Crohn disease. However, their molecular mechanism of action is unknown. In the present study, we have identified a unique and unexpected role for azathioprine and its metabolites in the control of T cell apoptosis by modulation of Rac1 activation upon CD28 costimulation. We found that azathioprine and its metabolites induced apoptosis of T cells from patients with Crohn disease and control patients. Apoptosis induction required costimulation with CD28 and was mediated by specific block- ade of Rac1 activation thro…

research product

Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases.

Cytokine signaling pathways involving transcription factors of the signal transducers and activators of transcription (STAT) family play a key role in the pathogenesis of inflammatory bowel diseases (IBD). STAT proteins are latent cytoplasmic transcription factors that induce transcription upon phosphorylation, dimerization, and nuclear translocation. However, their activation pattern in IBD is poorly understood. The aim of our study was to characterize STAT-expression in IBD.Mononuclear cells were isolated from 36 colonic specimens of Crohn's disease, ulcerative colitis, or from control patients. Cells were stimulated overnight with antibodies against human CD2 and CD28 and mononuclear cel…

research product

Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression.

Recent studies in transgenic mice have revealed that expression of a dominant negative form of the transcription factor GATA-3 in T cells can prevent T helper cell type 2 (Th2)-mediated allergic airway inflammation in mice. However, it remains unclear whether GATA-3 plays a role in the effector phase of allergic airway inflammation and whether antagonizing the expression and/or function of GATA-3 can be used for the therapy of allergic airway inflammation and hyperresponsiveness. Here, we analyzed the effects of locally antagonizing GATA-3 function in a murine model of asthma. We could suppress GATA-3 expression in interleukin (IL)-4–producing T cells in vitro and in vivo by an antisense ph…

research product