0000000000165917

AUTHOR

L. J. Evitts

Coulomb excitation of the |Tz|=1/2, A=23 mirror pair

Background: Electric-quadrupole (E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of N=Z represent a convenient laboratory for testing deficiencies in such models, making use of the isospin symmetry of the systems. Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in Tz=∣∣12∣∣ nuclei in the sd shell. The purpose of the present paper is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIU…

research product

Isospin symmetry in B(E2) values: Coulomb excitation study of Mg21

The Tz=−32 nucleus 21Mg has been studied by Coulomb excitation on 196Pt and 110Pd targets. A 205.6(1)-keV γ-ray transition resulting from the Coulomb excitation of the 52+ ground state to the first excited 12+ state in 21Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the 12+ state yield an adopted value of B(E2;52+→12+)=13.3(4) W.u. A new excited state at 1672(1) keV with tentative 92+ assignment was also identified in 21Mg. This work demonstrates a large difference in the B(E2;52+→12+) value between T=32, A=21 mirror nuclei. The difference is investigated in the shell-model framework employing both i…

research product

Isospin symmetry in $B(E2)$ values: Coulomb excitation study of ${}^{21}$Mg

The $T_z$~=~$-\frac{3}{2}$ nucleus ${}^{21}$Mg has been studied by Coulomb excitation on ${}^{196}$Pt and ${}^{110}$Pd targets. A 205.6(1)-keV $\gamma$-ray transition resulting from the Coulomb excitation of the $\frac{5}{2}^+$ ground state to the first excited $\frac{1}{2}^+$ state in ${}^{21}$Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the $\frac{1}{2}^+$ state yield an adopted value of $B(E2;\frac{5}{2}^+\rightarrow\frac{1}{2}^+)$~=~13.3(4)~W.u. A new excited state at 1672(1)~keV with tentative $\frac{9}{2}^+$ assignment was also identified in ${}^{21}$Mg. This work demonstrates large difference…

research product

Coulomb excitation of the $\left|T_z\right|=\frac{1}{2}$, $A=23$ mirror pair

Background: Electric-quadrupole ($E2$) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of $N=Z$ represent a convenient laboratory for testing deficiencies in such models, making use of the isospin-symmetry of the systems. Purpose: Uncertainties associated with literature $E2$ strengths in \textsuperscript{23}Mg are some of the largest in $T_z=\left|\frac{1}{2}\right|$ nuclei in the $sd$-shell. The purpose of the present work is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measuremen…

research product

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg-22

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {\it ab initio} framework without the use of effective charges; for example with the proper evolution of operators, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of $E2$ strength in $^{22}$Mg and its mirror $^{22}$Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new $B(E2)$ values while in-medium similarity-renormalization-group calculations consistently underpre…

research product