0000000000166989

AUTHOR

Shenchu Jin

Cross-talk between phosphatidic acid and ceramide during ethanol-induced apoptosis in astrocytes

Background Ethanol inhibits proliferation in astrocytes, an effect that was recently linked to the suppression of phosphatidic acid (PA) formation by phospholipase D (PLD). The present study investigates ethanol's effect on the induction of apoptosis in astrocytes and the formation of ceramide, an apoptotic signal. Evidence is presented that the formation of PA and ceramide may be reciprocally linked during ethanol exposure. Results In cultured rat cortical astrocytes, ethanol (0.3–1 %, v/v) induced nuclear fragmentation and DNA laddering indicative of apoptosis. Concomitantly, in cells prelabeled with [3H]-serine, ethanol caused a dose-dependent, biphasic increase of the [3H]-ceramide/ [3H…

research product

Ethanol inhibits proliferation in astrocytes, an effect that was recently linked to the suppression of phosphatidic acid (PA) formation by phospholipase D (PLD). The present study investigates ethanol's effect on the induction of apoptosis in astrocytes and the formation of ceramide, an apoptotic signal. Evidence is presented that the formation of PA and ceramide may be reciprocally linked during ethanol exposure. In cultured rat cortical astrocytes, ethanol (0.3–1 %, v/v) induced nuclear fragmentation and DNA laddering indicative of apoptosis. Concomitantly, in cells prelabeled with [3H]-serine, ethanol caused a dose-dependent, biphasic increase of the [3H]-ceramide/ [3H]-sphingomyelin rat…

research product

Inhibition of astroglial cell proliferation by alcohols: interference with the protein kinase C-phospholipase D signaling pathway.

Abstract Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t -butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4s-phorbol-12α,13s-dibutyrate (PDB). 4s-Phorbol-12α,13s-dibutyrate (PDB) induced a 10-fold increase of [3H]thymidine incorporation in cortical astrocytes prepared from newborn rats (EC 50 : 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent …

research product

Stability of phospholipase D in primary astrocytes.

Induction of expression and proteolytic breakdown of phospholipase D (PLD) isoforms in primary astrocyte cultures have been investigated. Astrocytes express both PLD1 and 2 and are dependent on PLD activity for cell proliferation [K. Kotter, J. Klein, J. Neurochem. 73 (1999) 2517]. Competitive RT-PCR analysis demonstrated a higher level of PLD1 mRNA than PLD2 mRNA (8.9 vs. 0.9amol/microg RNA, respectively). Treatment of astroglial cultures with the phorbol ester, 4beta-phorbol-12beta,13alpha-dibutyrate (0.1 microM), for 24-48h selectively induced PLD1b but not PLD1a or 2 expression as shown by PCR and Western blot; the effect was sensitive to Go 6976. In cells transiently permeabilized with…

research product

Activation of astroglial phospholipase D activity by phorbol ester involves ARF and Rho proteins.

Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%…

research product

Upregulation of Phospholipase D Expression and Activation in Ventricular Pressure-Overload Hypertrophy

Evidence for a role of phospholipase D (PLD) in cellular proliferation and differentiation is accumulating. We studied PLD activity and expression in normal and hypertrophic rat and human hearts. In rat heart, abdominal aortic banding (constriction to 50% of original lumen) caused hypertrophy in the left ventricle (as shown by weight index and ANP expression) by about 15% after 30 days without histological evidence of fibrosis or signs of decompensation and in the right ventricle after 100 days. The hypertrophy was accompanied by small increases of basal PLD activity and strong potentiation of stimulated PLD activity caused by 4β-phorbol-12β,13α-dibutyrate (PDB) and by phenylephrine. The mR…

research product