0000000000170160

AUTHOR

Jan Macutkevic

Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application

Composite materials, containing low concentrations of carbon nanotubes (CNTs) of three different diameters and heat-resistant phosphate ceramic as a matrix were prepared by cold-pressing method. Their dielectric properties were studied at room temperature in a wide frequency range (20 Hz–1 MHz). It was found experimentally and proved theoretically via modeling of the composites as a random capacitor–resistor–diode network that electrical percolation concentration depends significantly on the diameter of the nanoinclusions. The main conclusion is that the best candidate providing both the lower percolation threshold and high absolute values of ac conductivity is thinner carbon nanotubes (in …

research product

Broadband dielectric spectroscopy of PbMg1/3Nb2/3O3–PbSc1/2Nb1/2O3 ceramics

Abstract Broadband dielectric spectroscopy results of various ordered and disordered (1 − x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.…

research product

Dielectric properties of graphite-based epoxy composites

International audience; Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite, natural graphite, and coarse, medium and fine artificial graphites have been prepared. Results of broadband dielectric investigations of such materials in wide temperature (25-450 K) and frequency (20 Hz-3 THz) ranges are presented. The dielectric permittivity strongly increases with graphite particle size. The graphite particle size and shape also have a strong impact on freezing temperature, conductivity activation energy and composite electromagnetic absorption properties at room temperature. The lowest percolation threshold is observed for exfoliated gra…

research product

Electrical transport in carbon black-epoxy resin composites at different temperatures

Citation: J. Appl. Phys. 114, 033707 (2013); doi: 10.1063/1.4815870 (Received 3 May 2013; accepted 27 June 2013; published online 17 July 2013) Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25–500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration…

research product

DIELECTRIC PROPERTIES OF EPOXY RESIN COMPOSITES FILLED WITH NANOCARBON INCLUSIONS

The epoxy resin composites with various carbon additives were investigated in the frequency range of 20 Hz - 3 GHz at temperatures from room to 500 K. The dielectric properties were found to be strongly impacted by percolation threshold. The lowest percolation threshold (< 0.25 wt.%), was observed in composites with single-walled carbon nanotubes.

research product

Radio and Microwave Spectroscopy of 0.2PMN-0.4PSN-0.4PZN Relaxor Ceramics

Dielectric spectroscopy results of 0.2PbMg 1/3 Nb 2/3 O 3 -0.4PbSc 1/2 Nb 1/2 O 3 -0.4PbZn 1/3 Nb 2/3 O 3 ceramics are reported for 200 < T < 450 K and 20 Hz < v < 11 GHz. Dielectric constant is very high (more than 12000) in the vicinity of the peak. Anomalous broad dielectric relaxation has been observed near and below the temperature of the maximum permittivity, T m (at 1 kHz). The distribution of relaxation times have been calculated directly from the dielectric spectra. At higher temperatures than the maximum permittivity, T m the distribution of the relaxation times is symmetrically shaped (Cole-Cole function satisfactory describes the dielectric response). At lower temperatures, the …

research product

Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites

The wide application of microwaves stimulates searching for new materials with high electrical conductivity and electromagnetic (EM) interference shielding effectiveness (SE). We conducted a comparative study of EM SE in K a -band demonstrated by ultra-light micro-structural porous carbon solids (carbon foams) of different bulk densities, 0.042 to 0.150  g/cm 3 , and conventional flexible epoxy resin filled with carbon nanotubes (CNTs) in small concentrations, 1.5 wt.%. Microwave probing of carbon foams showed that the transmission through a 2 mm-thick layer strongly decreases with decreasing the pore size up to the level of 0.6%, due to a rise of reflectance ability. At the same time, 1 mm…

research product

Epoxy composites filled with high surface area-carbon fillers

Citation: J. Appl. Phys. 114, 164304 (2013); doi: 10.1063/1.4826529 (Received 24 July 2013; accepted 6 October 2013; published online 22 October 2013) A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25–2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, go…

research product

Broadband dielectric spectroscopy of 0.4PMN-0.3PSN-0.3PZN ceramics

In this paper, results of the broadband dielectric spectroscopy of 0.4PbMg1/3Nb2/3O3-0.3PbZn1/3Nb2/3O3-0.3PbSc1/2Nb1/2O3(0.4PMN-0.3PZN-0.3PSN) are presented. Dielectric spectra of these solutions were investigated in a broad frequency range from 20 Hz to 100 GHz. Very strong and broad dielectric relaxation was analyzed in terms of distribution of relaxations times, using Tichonov regularization method. It revealed slowing down of the longest relaxation and the mean relaxation times in the agreement with the Vogel-Fulcher law and the Arrhenius law, respectively.

research product

Corrigendum to “Far-infrared and THz spectroscopy of 0.4PMN–0.3PSN–0.3PZN relaxor ferroelectric ceramics” [J. Eur. Ceram. Soc. 27 (2007) 3713–3717]

research product

Soft mode in PMN–PSN ceramics

Various ordered and disordered (1–x)Pb(Mg1/3Nb2/3)O3 –x Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics were studied by THz transmission spectroscopy in the temperature range of 10–300 K. It is found that the dielectric relaxation dominates in the spectra in higher temperatures, T > 170 K. In contrast, below 150 K, the strength of relaxation becomes so weak that the phonon contribution can be separated. The phonon contributribution in the investigated frequency range (200 GHz–2 THz) is presumably caused by the E component of the Last mode. The component exhibits hardening on cooling in all investigated ceramics and its critical temperature in ferroelectric PMN–PSN ceramics (x = 1, 0.95) is lower than t…

research product

Microwave response properties of epoxy resin composites filled with graphitic fillers

Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite (EG), natural graphite, and coarse, medium and fine artificial graphites have been prepared. The dielectric permittivity strongly increases with graphite particle size. This effect is related to the distance of the investigated filler concentrations to the composites' percolation threshold. Microwave experiments show that exfoliated graphite is, out of investigated graphite particles, the only one being a really effective additive for producing electromagnetic (EM) interference (EMI) shielding: 2 wt.% epoxy/EG is absolutely opaque to electromagnetic radiation at 30 GHz.

research product

Epoxy Resin/Carbon Black Composites Below the Percolation Threshold

International audience; A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At …

research product

Broadband Dielectric Spectroscopy of Ferroelectric Phase Transitions in PbSc1/2Nb1/2O3Ordered Ceramics

Broadband dielectric spectroscopy of PbSc 1/2 Nb 1/2 O 3 (PSN) ordered ceramics are reported within the range of 20 Hz ≤ ν ≤ 2 THz in 80 K ≤ T ≤ 300 K temperatures. Spectrally very broad dielectric dispersion consisting of two parts − at lower frequencies, ferroelectric domains cause a dispersion and at higher frequencies, higher temperatures the relaxation soft mode is responsible for the dispersion. The relaxation soft mode exhibit pronounced hardening on cooling, whilst the ferroelectric phase transition is connected with an abrupt freezing and rise of polar nanoregions into ferroelectric domains.

research product

Distribution of the relaxation times of the new relaxor 0.4PSN–0.3PMN–0.3PZN ceramics

Abstract The real distribution function of the relaxation times g ( τ ) of the relaxor ferroelectric ceramics 0.4PSN–0.3PMN–0.3PZN is calculated from the experimental dielectric spectra obtained in the frequency range from 20 Hz to 1.25 GHz. Below the Burns temperature T B  ≅ 380 K, where the clusters begin to appear on cooling, the distribution of the relaxation times is symmetrically shaped. On cooling, the permittivity and loss spectra strongly broaden and slow down. The g ( τ ) function becomes asymmetrically shaped and the second maximum appears. The width of the g ( τ ) function is calculated at different temperatures. The shortest relaxation time is of the order of 10 −12  s and it r…

research product

Far-infrared and THz spectroscopy of 0.4PMN–0.3PSN–0.3PZN relaxor ferroelectric ceramics

Abstract Temperature dependence of the optic phonons in 0.4PbMg 1/3 Nb 2/3 O 3 –0.3PbSc 1/2 Nb 1/2 O 3 –0.3PbZn 1/3 Nb 2/3 O 3 (0.4PMN–0.3PSN–0.3PZN) ceramics were studied by means of FTIR reflection and THz transmission spectroscopy in the temperature range of −253.15 to 226.85 °C. On heating from low temperatures, the A 1 component of the strongly split TO 1 mode softens towards the Burns temperature, but the softening ceases near 126.85 °C which could be a signature of polar cluster percolation temperature. Surprisingly, the TO 2 mode also softens on heating and follows the Cochran law with extrapolated critical temperature close to the melting point.

research product

Anomalous Broad Dielectric Dispersion of 0.4PZN-0.3PSN-0.3PZN Relaxor Ceramics at Lower Temperatures

Dielectric properties of 0.4PbZn1/3Nb2/3O3-0.3PbSc1/2Nb1/2O3-0.3PbMg1/3Nb2/3O3- (0.4PZN- 0.3PSN-0.3PMN) ceramics are presented for 200 &lt; T &lt; 500 K and 20 Hz &lt; ν &lt; 1 MHz. Dielectric constant is very high (more 14000) in the vicinity of the peak. Anomalous broad dielectric relaxation have been observed near the temperature of the maximum permittivity, Tm (at 1 kHz). External bias field considerably lowers the value of dielectric losses at low frequencies due to decrease of polar nano regions contribution to the dielectric permittivity.

research product

Dielectric properties of 0.4Na0.5Bi0.5TiO3–(0.6-x)SrTiO3–xPbTiO3 solid solutions

Abstract In this paper we present our measurements of the linear and nonlinear dielectric permittivity of 0.4 Na 0.5 Bi 0.5 TiO 3 – ( 0.6 - x ) SrTiO 3 – xPbTiO 3 solid solutions (x = 0, 0.05, 0.1, 0.15). The dielectric anomaly increases in the system with respect to the concentration of lead, showing that interactions between dipolar entities are modified. The system exhibits dipolar-glass-like behaviour at low values of x ( 0 ⩽ x 0.1 ). Relaxor behaviour emerges in the sample where x = 0.1 . Furthermore, a spontaneous first-order phase transition from relaxor to normal ferroelectric is observed at x ⩾ 0.15 . A few peculiar dispersion regions are observed in the ferroelectric phase, which …

research product

Infrared and broadband dielectric spectroscopy of PZN-PMN-PSN relaxor ferroelectrics: Origin of two-component relaxation

Dielectric spectra of several solid solutions of $\mathrm{Pb}{\mathrm{Mg}}_{1∕3}{\mathrm{Nb}}_{2∕3}{\mathrm{O}}_{3}\text{\ensuremath{-}}\mathrm{Pb}{\mathrm{Sc}}_{1∕2}{\mathrm{Nb}}_{1∕2}{\mathrm{O}}_{3}\text{\ensuremath{-}}\mathrm{Pb}{\mathrm{Zn}}_{1∕3}{\mathrm{Nb}}_{2∕3}{\mathrm{O}}_{3}$ (PMN-PSN-PZN) relaxor ferroelectrics were investigated in a broad frequency range from $20\phantom{\rule{0.3em}{0ex}}\mathrm{Hz}$ up to $100\phantom{\rule{0.3em}{0ex}}\mathrm{THz}$ by a combination of dielectric spectroscopy $(20\phantom{\rule{0.3em}{0ex}}\mathrm{Hz}\char21{}53\phantom{\rule{0.3em}{0ex}}\mathrm{GHz})$, time-domain terahertz spectroscopy $(0.1\char21{}0.9\phantom{\rule{0.3em}{0ex}}\mathrm{TH…

research product

High Temperature Dielectric Properties of PMN‐PSN‐PZN Relaxors

research product

Terahertz Spectroscopy of Ordered PbSc1/2Nb1/2O3Ceramics

research product

Polar phonons in relaxor ferroelectric 0.2PSN-0.4PMN-0.4PZN

Relaxor ferroelectrics 0-2PbSc(1/2)Nb(1/2)O(3) - 0.4PbMg(1/3)Nb(2/3)O(3)-0.4PbZn(1/3)Nb(2/3)O(3) ceramics were studied by means of the Fourier transform infrared reflection and THz transmission spectroscopy in the temperature range of 20-500 K. On heating from low temperatures, the A(1) component of the strongly split TO1 mode softens towards the Burns temperature, but the softening ceases near 400 K, which could be a signature of polar cluster percolation temperature.

research product