0000000000170491

AUTHOR

Sandra Pisonero-vaquero

showing 5 related works from this author

P0973 : Quercetin ameliorates MCD-induced non-alcoholic fatty liver disease in mice by modulating inflammatory, oxidative/nitrosative stress and lipi…

2015

HepatologyChemistryFatty liverNon alcoholicLipid metabolismOxidative phosphorylationDiseasePharmacologymedicine.diseasechemistry.chemical_compoundBiochemistrymedicineRelated geneQuercetinPI3K/AKT/mTOR pathwayJournal of Hepatology
researchProduct

Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver dise…

2015

Scope Flavonoids and related compounds seem to have favorable effects on nonalcoholic fatty liver disease (NAFLD) progression, although the exact mechanisms implicated are poorly understood. In this study, we aimed to investigate the effect of the flanovol quercetin on gene expression deregulation involved in the development of NAFLD, as well as the possible implication of phosphatidylinositol 3-kinase (PI3K)/AKT pathway modulation. Methods and results We used an in vivo model based on methionine- and choline-deficient (MCD) diet-fed mice and an in vitro model consisting of Huh7 cells incubated with MCD medium. MCD-fed mice showed classical pathophysiological characteristics of nonalcoholic…

CD36 AntigensMalemedicine.medical_specialtyOxidative phosphorylationBiologyMicePhosphatidylinositol 3-Kinaseschemistry.chemical_compoundNon-alcoholic Fatty Liver DiseaseInternal medicineNonalcoholic fatty liver diseaseGene expressionmedicineTranscriptional regulationAnimalsLY294002PhosphatidylinositolCells CulturedPI3K/AKT/mTOR pathwayLipid metabolismLipid Metabolismmedicine.diseaseMice Inbred C57BLDisease Models AnimalOxidative StressEndocrinologyGene Expression RegulationchemistryCancer researchQuercetinLipid PeroxidationProto-Oncogene Proteins c-aktSignal TransductionFood ScienceBiotechnologyMolecular Nutrition & Food Research
researchProduct

The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulati…

2013

Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activ…

Hepatocyte Nuclear Factor 3-alphaMaleRepressorBiologyFatty Acid-Binding ProteinsFatty acid-binding proteinMiceTransactivationNon-alcoholic Fatty Liver DiseaseNonalcoholic fatty liver diseaseCCAAT-Enhancer-Binding Protein-alphamedicineAnimalsHumansPPAR alphaadipocyte protein 2Molecular BiologyTranscription factorCells Culturedchemistry.chemical_classificationFatty acidHep G2 CellsCell Biologymedicine.diseaseMolecular biologyFatty LiverMice Inbred C57BLLipotoxicitychemistrybiology.proteinProtein BindingBiochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
researchProduct

Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imb…

2016

Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrom…

0301 basic medicinemedicine.medical_specialtyGut floraDiet High-FatBiochemistryMice03 medical and health sciencesNon-alcoholic Fatty Liver DiseasePhysiology (medical)Internal medicineNonalcoholic fatty liver diseasemedicineAnimalsHumansObesityMetabolic SyndromebiologyFatty liverLipid metabolismLipid Metabolismmedicine.diseasebiology.organism_classificationGastrointestinal MicrobiomeIntestinesToll-Like Receptor 4Disease Models Animal030104 developmental biologyEndocrinologyLiverLipotoxicityImmunologyQuercetinInsulin ResistanceSteatosisMetabolic syndromeDysbiosisSignal TransductionFree Radical Biology and Medicine
researchProduct

Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease.

2015

The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-defi…

MaleTranscription GeneticThiazepinesResponse elementReceptors Cytoplasmic and NuclearBiologyMiceNon-alcoholic Fatty Liver DiseaseCyclosporin amedicineCCAAT-Enhancer-Binding Protein-alphaAnimalsHumansProtein kinase APromoter Regions GeneticTranscription factorCells CulturedPharmacologyMitogen-Activated Protein Kinase 1KinaseValproic AcidFatty liverTetracyclinemedicine.diseaseFatty LiverDoxycyclineCancer researchSmall heterodimer partnerCyclosporineMolecular MedicineSignal transductionSignal TransductionMolecular pharmacology
researchProduct