0000000000170671
AUTHOR
Jenny Jyrkänkallio-mikkola
Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities
AbstractUnderstanding the variation in community composition and species abundances, i.e., β-diversity, is at the heart of community ecology. A common approach to examine β-diversity is to evaluate directional turnover in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distances. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 149 datasets comprising different types of organisms and environments. We modelled an exponential distance decay for each dataset using generalized linear models and extracted r2 and slope to analyse the streng…
Local environment and space drive multiple facets of stream macroinvertebrate beta diversity
AIM: Understanding variation in biodiversity typically requires consideration of factors operating at different spatial scales. Recently, ecologists and biogeographers have recognized the need of analysing ecological communities in the light of multiple facets including not only species‐level information but also functional and phylogenetic approaches to improve our understanding of the relative contribution of processes shaping biodiversity. Here, our aim was to disentangle the relative importance of environmental variables measured at multiple levels (i.e., local, catchment, climate, and spatial variables) influencing variation in macroinvertebrate beta diversity facets (i.e., species, tr…
Does catchment geodiversity foster stream biodiversity?
Abstract Context One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth’s surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested. Objectives The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on …
Does trait-based joint species distribution modelling reveal the signature of competition in stream macroinvertebrate communities?
1. The occupancy and abundance of species are jointly driven by local factors, such as environmental characteristics and biotic interactions, and regional‐scale factors, such as dispersal and climate. Recently, it has been shown that biotic interactions shape species occupancies and abundances beyond local extents. However, for small ectothermic animals, particularly for those occurring in freshwater environments, the importance of biotic interactions remains understudied. Species‐to‐species associations from joint species distribution models (i.e. species associations while controlling for environmental characteristics) are increasingly used to draw hypotheses of which species possibly sho…
Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters
Aim: Biological diversity typically varies between climatically different regions, and regions closer to the equator often support higher numbers of taxa than those closer to the poles. However, these trends have been assessed for a few organism groups, and the existing studies have rarely been based on extensive identical surveys in different climatic regions. Location: We conducted standardized surveys of wadeable streams in a boreal (western Finland) and a subtropical (south-eastern Brazil) region, sampling insects identically from 100 streams in each region and measuring the same environmental variables in both regions. Taxon: Aquatic insects. Methods: Comparisons were made at the scale…
Community size affects the signals of ecological drift and niche selection on biodiversity
AbstractEcological drift can override the effects of deterministic niche selection on small populations and drive the assembly of small communities. We tested the hypothesis that smaller local communities are more dissimilar among each other because of ecological drift than larger communities, which are mainly structured by niche selection. We used a unique, comprehensive dataset on insect communities sampled identically in a total of 200 streams in climatically different regions (Brazil and Finland) that differ in community size by fivefold. Null models allowed us to estimate the magnitude to which beta diversity deviates from the expectation under a random assembly process while taking di…