Generalized transport coefficients in a gas with large shear rate
We get a solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation by means of a perturbative expansion of a temperature gradient to study the transport properties in a gas with large shear rate. The irreversible fluxes are evaluated exactly to first order in the expansion for Maxwell molecules. The transport coefficients obtained are highly nonlinear functions of the shear rate. This dependence on shear rate is analysed and compared with previous results for several transport coefficients. Finally, we have found a solution for a simple model of constant collision frequency for which a large shear rate coexists with an arbitrary temperature gradient.
Kinetic model for steady heat flow
We construct a consistent solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation describing a system in a steady state with constant pressure and nonuniform temperature. The thermal profile is not linear and depends on the interaction potential. All the moments of the distribution function are given as polynomials in the local thermal gradient. In particular, the heat flux always obeys the (linear) Fourier law.