0000000000170818
AUTHOR
Nicholas Clinton
Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine
High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data
Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…
Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning
The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to p…