0000000000170820
AUTHOR
Emma Izquierdo-verdiguier
Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine
High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
A kernel regression approach to cloud and shadow detection in multitemporal images
Earth observation satellites will provide in the next years time series with enough revisit time allowing a better surface monitoring. In this work, we propose a cloud screening and a cloud shadow detection method based on detecting abrupt changes in the temporal domain. It is considered that the time series follows smooth variations and abrupt changes in certain spectral features will be mainly due to the presence of clouds or cloud shadows. The method is based on linear and nonlinear regression analysis; in particular we focus on the regularized least squares and kernel regression methods. Experiments are carried out using Landsat 5 TM time series acquired over Albacete (Spain), and compa…
Understanding deep learning in land use classification based on Sentinel-2 time series
AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …
Cloud screening with combined MERIS and AATSR images
This paper presents a cloud screening algorithm based on ensemble methods that exploits the combined information from both MERIS and AATSR instruments on board ENVISAT in order to improve current cloud masking products for both sensors. The first step is to analyze the synergistic use of MERIS and AATSR images in order to extract some physically-based features increasing the separability of clouds and surface. Then, several artificial neural networks are trained using different sets of input features and different sets of training samples depending on acquisition and surface conditions. Finally, outputs of the trained neural networks are combined at the decision level to construct a more ac…
Growing stock volume from multi-temporal landsat imagery through google earth engine
Growing stock volume (GSV) is one of the most important variables for.forest management and is traditionally- estimated from ground measurements. These measurements are expensive and therefore sparse and hard to maintain in time on a regular basis. Remote sensing data combined with national forest inventories constitute a helpful tool to estimate and map forest attributes. However, most studies on GSV estimation from remote sensing data focus on small forest areas with a single or only a few species. The current study aims to map GSV in peninsular Spain, a rather large and very heterogeneous area. Around 50 000 wooded land plots from the Third Spanish National Forest Inventory (NFI3) were u…
Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data
Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…
Spectral clustering with the probabilistic cluster kernel
Abstract This letter introduces a probabilistic cluster kernel for data clustering. The proposed kernel is computed with the composition of dot products between the posterior probabilities obtained via GMM clustering. The kernel is directly learned from the data, is parameter-free, and captures the data manifold structure at different scales. The projections in the kernel space induced by this kernel are useful for general feature extraction purposes and are here exploited in spectral clustering with the canonical k-means. The kernel structure, informative content and optimality are studied. Analysis and performance are illustrated in several real datasets.
Semisupervised kernel orthonormalized partial least squares
This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…
Kernels for Remote Sensing Image Classification
Classification of images acquired by airborne and satellite sensors is a very challenging problem. These remotely sensed images usually acquire information from the scene at different wavelengths or spectral channels. The main problems involved are related to the high dimensionality of the data to be classified and the very few existing labeled samples, the diverse noise sources involved in the acquisition process, the intrinsic nonlinearity and non-Gaussianity of the data distribution in feature spaces, and the high computational cost involved to process big data cubes in near real time. The framework of statistical learning in general, and of kernel methods in particular, has gained popul…
Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources
This paper reviews the most important information fusion data-driven algorithms based on Machine Learning (ML) techniques for problems in Earth observation. Nowadays we observe and model the Earth with a wealth of observations, from a plethora of different sensors, measuring states, fluxes, processes and variables, at unprecedented spatial and temporal resolutions. Earth observation is well equipped with remote sensing systems, mounted on satellites and airborne platforms, but it also involves in-situ observations, numerical models and social media data streams, among other data sources. Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant i…
Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis
This paper presents a novel semisupervised kernel partial least squares (KPLS) algorithm for nonlinear feature extraction to tackle both land-cover classification and biophysical parameter retrieval problems. The proposed method finds projections of the original input data that align with the target variable (labels) and incorporates the wealth of unlabeled information to deal with low-sized or underrepresented data sets. The method relies on combining two kernel functions: the standard radial-basis-function kernel based on labeled information and a generative, i.e., probabilistic, kernel directly learned by clustering the data many times and at different scales across the data manifold. Th…
Encoding Invariances in Remote Sensing Image Classification With SVM
This letter introduces a simple method for including invariances in support-vector-machine (SVM) remote sensing image classification. We design explicit invariant SVMs to deal with the particular characteristics of remote sensing images. The problem of including data invariances can be viewed as a problem of encoding prior knowledge, which translates into incorporating informative support vectors (SVs) that better describe the classification problem. The proposed method essentially generates new (synthetic) SVs from the obtained by training a standard SVM with the available labeled samples. Then, original and transformed SVs are used for training the virtual SVM introduced in this letter. W…
Gross Primary Production and false spring: a spatio-temporal analysis
<p>Phenological information can be obtained from different sources of data. For instance, from remote sensing data or products and from models driven by weather variables. The former typically allows analyzing land surface phenology whereas the latter provide plant phenological information. Analyzing relationships between both sources of data allows us to understand the impact of climate change on vegetation over space and time. For example, the onset of spring is advanced or delayed by changes in the climate. These alterations affect plant productivity and animal migrations.</p><p>Spring onset monitoring is supported by the Extended Spring Index (…
Including invariances in SVM remote sensing image classification
This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…
Semisupervised nonlinear feature extraction for image classification
Feature extraction is of paramount importance for an accurate classification of remote sensing images. Techniques based on data transformations are widely used in this context. However, linear feature extraction algorithms, such as the principal component analysis and partial least squares, can address this problem in a suboptimal way because the data relations are often nonlinear. Kernel methods may alleviate this problem only when the structure of the data manifold is properly captured. However, this is difficult to achieve when small-size training sets are available. In these cases, exploiting the information contained in unlabeled samples together with the available training data can si…
HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers
HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and clas…