0000000000170824

AUTHOR

Marco Moneta

showing 3 related works from this author

Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine

2020

High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…

010504 meteorology & atmospheric sciences0208 environmental biotechnology02 engineering and technologyDown scalingVegetationSeasonalitymedicine.disease01 natural sciencesReflectivity020801 environmental engineeringPhotosynthetically active radiationHigh spatial resolutionmedicineEnvironmental scienceLeaf area indexImage resolution0105 earth and related environmental sciencesRemote sensingIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Interpolation and Gap Filling of Landsat Reflectance Time Series

2018

Products derived from a single multispectral sensor are hampered by a limited spatial, spectral or temporal resolutions. Image fusion in general and downscaling/blending in particular allow to combine different multiresolution datasets. We present here an optimal interpolation approach to generate smoothed and gap-free time series of Landsat reflectance data. We fuse MODIS (moderate-resolution imaging spectroradiometer) and Landsat data globally using the Google Earth Engine (GEE) platform. The optimal interpolator exploits GEE ability to ingest large amounts of data (Landsat climatologies) and uses simple linear operations that scale easily in the cloud. The approach shows very good result…

Signal Processing (eess.SP)Image fusion010504 meteorology & atmospheric sciencesComputer scienceMultispectral image0211 other engineering and technologies02 engineering and technology01 natural sciencesReflectivitySpectroradiometerFOS: Electrical engineering electronic engineering information engineeringTime seriesElectrical Engineering and Systems Science - Signal ProcessingScale (map)Image resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInterpolationDownscaling
researchProduct

Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data

2021

Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…

Thematic mapContextual image classificationLand useComputer scienceRemote sensing (archaeology)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONLand coverVegetationPlant functional typeImage resolutionRemote sensing2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct