0000000000171768

AUTHOR

F.j. Ferri

Learning vector quantization with alternative distance criteria

An adaptive algorithm for training of a nearest neighbour (NN) classifier is developed in this paper. This learning rule has some similarity to the well-known LVQ method, but uses the nearest centroid neighbourhood concept to estimate optimal locations of the codebook vectors. The aim of this approach is to improve the performance of the standard LVQ algorithms when using a very small codebook. The behaviour of the learning technique proposed here is experimentally compared to those of the plain k-NN decision rule and the LVQ algorithms.

research product

Splitting criterion for hierarchical motion estimation based on perceptual coding

A new entropy-constrained motion estimation scheme using variable-size block matching is proposed. It is known that fixed-size block matching as used in most video codec standards is improved by using a multiresolution or multigrid approach. In this work, it is shown that further improvement is possible in terms of both the final bit rate achieved and the robustness of the predicted motion field if perceptual coding is taken into account in the motion estimation phase. The proposed scheme is compared against other variable- and fixed-size block matching algorithms.

research product

Comparison of perceptually uniform quantisation with average error minimisation in image transform coding

An alternative transform coder design criterion based on restricting the maximum perceptual error of each coefficient is proposed. This perceptually uniform quantisation of the transform domain ensures that the perceptual error will be below a certain limit regardless of the particular input image. The results show that the proposed criterion improves the subjective quality of the conventional average error criterion even if it is weighted with the same perceptual metric.

research product

Geometric Properties of the 3D Spine Curve

Through a 3D reconstruction of the human back surface using structured light techniques, we study the properties of spine curve by means of a set of parameters related to measures commonly applied in medicine. In this way, descriptors for measuring the abnormalities in the projections of the front and sagittal planes can be computed. We build the spine curve in 3D and analyse the behaviour of the Frenet frame when along the curve the deformation processes in idiophatic scoliosis appear.

research product

From the nearest neighbour rule to decision trees

This paper proposes an algorithm to design a tree-like classifier whose result is equivalent to that achieved by the classical Nearest Neighbour rule. The procedure consists of a particular decomposition of a d-dimensional feature space into a set of convex regions with prototypes from just one class. Some experimental results over synthetic and real databases are provided in order to illustrate the applicability of the method.

research product

Accurate detection and characterization of corner points using circular statistics and fuzzy clustering

Accurate detection and characterization of corner points in grey level images is considered as a pattern recognition problem. The method considers circular statistic tests to detect 2D features. A fuzzy clustering algorithm is applied to the edge orientations near the prospective corners to detect and classify them. The method is based on formulating hypotheses about the distribution of these orientations around an edge, corner or other 2-D feature. The method may provide accurate estimates of the direction of the edges that converge in a corner, along with their confidence intervals. Experimental results show the method to be robust enough against noise and contrast changes. Fuzzy membersh…

research product

Perceptually weighted optical flow for motion-based segmentation in MPEG-4 paradigm

In the MPEG-4 paradigm, the sequence must be described in terms of meaningful objects. This meaningful, high-level representation should emerge from low-level primitives such as optical flow and prediction error which are the basic elements of previous-generation video coders. The accuracy of the high-level models strongly depends on the robustness of the primitives used. It is shown how perceptual weighting in optical flow computation gives rise to better motion estimates which consistently improve motion-based segmentation compared to equivalent unweighted motion estimates.

research product

Improving Pattern Recognition Based Pharmacological Drug Selection Through ROC Analysis

The design of new medical drugs is a very complex process in which combinatorial chemistry techniques are used. The goal consists of discriminating between molecular compounds exhibiting or not certain pharmacological activities. Different machine learning approaches have been recently applied to different drug design problems leading to competitive results in pointing at particular compounds with high probability of exhibiting activity. The present work first deeps into the natural trade-off between accuracy in the much less populated active group and false alarm rate which could lead to too many expensive laboratory tests. Preliminary results show how different classification techniques a…

research product

Using proximity and spatial homogeneity in neighbourhood-based classifiers

In this paper, a set of neighbourhood-based classifiers are jointly used in order to select a more reliable neighbourhood of a given sample and take an appropriate decision about its class membership. The approaches introduced here make use of two concepts: proximity and symmetric placement of the samples.

research product

Editing prototypes in the finite sample size case using alternative neighborhoods

The recently introduced concept of Nearest Centroid Neighborhood is applied to discard outliers and prototypes 111 class overlapping regions in order to improve the performance of the Nearest Neighbor rule through an editing procedure, This approach is related to graph based editing algorithms which also define alternative neighborhoods in terms of geornetric relations, Classical editing algorithms are compared to these alternative editing schemes using several synthetic and real data problems. The empirical results show that, the proposed editing algorithm constitutes a good trade-off among performance and computational burden.

research product

Some Experiments in Supervised Pattern Recognition with Incomplete Training Samples

This paper presents some ideas about automatic procedures to implement a system with the capability of detecting patterns arising from classes not represented in the training sample. The procedure aims at incorporating automatically to the training sample the necessary information about the new class for correctly recognizing patterns from this class in future classification tasks. The Nearest Neighbor rule is employed as the central classifier and several techniques are added to cope with the peril of incorporating noisy data to the training sample. Experimental results with real data confirm the benefits of the proposed procedure.

research product

Importance of quantiser design compared to optimal multigrid motion estimation in video coding

Adaptive flow computation and DCT quantisation play complementary roles in motion compensated video coding schemes. Since the introduction of the intuitive entropy-constrained motion estimation of Dufaux et al. (1995), several optimal variable-size block matching algorithms have been proposed. Many of these approaches put forward their intrinsic optimality, but the corresponding visual effect has not been explored. The relative importance of optimal multigrid motion estimation with regard to quantisation is addressed in the context of MPEG-like coding. It is shown that while simpler (suboptimal) motion estimates give subjective results as good as the optimal motion estimates, small enhancem…

research product