0000000000171885
AUTHOR
Wolfgang Thomas
Monadic second-order logic over pictures and recognizability by tiling systems
We show that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system if and only if it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and matches a natural logic. The proof is based on the Ehrenfeucht-FraIsse technique for first-order logic and an implementation of “threshold counting” within tiling systems.
The Monadic Quantifier Alternation Hierarchy over Grids and Graphs
AbstractThe monadic second-order quantifier alternation hierarchy over the class of finite graphs is shown to be strict. The proof is based on automata theoretic ideas and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. Considering grids where the width is a function of the height, we prove that the difference between the levels k+1 and k of the monadic hierarchy is witnessed by a set of grids where this function is (k+1)-fold exponential. We then transfer the hierarchy result to the class of directed (or undirected) graphs, using an encoding technique called strong reduction. It is notable that one can obtain sets of graphs which occur arbitrar…
Monadic Second-Order Logic over Rectangular Pictures and Recognizability by Tiling Systems
Abstract It is shown that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system iff it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and also matches a natural logic. The proof is based on the Ehrenfeucht–Fraisse technique for first-order logic and an implementation of “threshold counting” within tiling systems.